Assessment of General Purpose GPU systems in
real-time control

Tautvydas J. Maceina, Gabriele Manduchi

Abstract—The recent advance of GPU technology is offer-
ing great prospects in computation. Originally developed for
graphical applications, general purpose GPUs (GPGPU) have
been extensively used for massively parallel computation. The
penetration of the GPU technology in real-time control has been
somewhat limited due to two main reasons:

1) Control algorithms for real-time applications involving
highly parallel computation are not very common in
practical applications

2) The excellent performance in computation of GPUs is paid
for a penalty in memory transfer. As a consequence, GPU
applications for real-time controls suffer from an often
unacceptable latency.

There are in any case some real-time applications in fusion
research that may take benefit from the usage of GPGPUs such
as state space-based control for a very large number of states.
The excellent performance of GPUs in term of throughput of
computation is however counterbalanced by a poor performance
in memory transfer, leading to an increase in latency in the typical
cycle in real-time control involving data sample acquisition;
elaboration; transfer of the resulting data to actuators. A precise
assessment of latency vs throughput represents therefore a very
useful information when designing real-time control systems for
potentially parallel applications, especially when facing the option
for GPUs or multi-threaded CPU applications. We designed a
code (for GPU & CPU) to test latency and jitter. Operations that
we used as a test load were dense matrix-vector multiplications
and memory transfer in order to mimic a large state space based
control algorithm. We compared obtained results to see where
GPU computation excels and where it falls behind in order to
give useful hints to designers facing the option of using either a
multi-threaded, multicore CPU application or a GPGPU.

I. INTRODUCTION

GPGPU has firmly earned its reputation in HPC as hardware
for massively parallel computation. Yet GPU application in
Real-Time problem solving is just starting to develop. GPGPU
is steadily pushing its way into fusion scientific community
as a new tool for Real-Time applications. We as members of
fusion community would like to give a comprehensive study
on applicability and prospects of GPU. Particularly we hope
we will succeed to indicate points, when it is advantageous
migrating your code to GPU and when CPU is just sufficient.

II. GPU ARCHITECTURE

The CPU directs processing tasks to the GPU via a stream
through a hardware graphics pipeline. A GPU device has
streaming multiprocessors (SM) each of which contains a

Tautvydas J. Maceina is with the Universita degli Studi di Padova, Padova,
Italy, (e-mail: tautvydas.maceina@igi.cnr.it).

Gabriele Manduchi is with the Consorzio RFX, Padova, Italy, (e-mail:
gabriele.manduchi @igi.cnr.it).

fixed set of processing cores. This streaming architecture
executes single instruction multiple data (SIMD) in parallel
where each SM is computationally independent from any
other SM, making it ideal for problems requiring large data
sets processing. The Compute Unified Device Architecture
(CUDA) provides the API to submit tasks to and receive
results from the graphics processor. The computations are
performed by calling a method from the CPU that hosts the
GPU device known as a kernel function. Processing threads are
created and grouped together in blocks. The number of threads
and blocks are parameters of the kernel function. A block
is executed by the GPU scheduler using a set of 32 parallel
threads (known as a warp). While executing, each block and
thread maintain unique indices blockIdx and threadIdx.

III. GPU MEMORY

GPU has 3 types of physical memory: register memory,
shared memory and global memory. Register memory (256
kB) and shared memory (48 kB) both reside on chip, thus are
the fastest in access. Global memory is the bank usually of
several gigabytes, which resides off chip and is the slowest
in access. Each of them has a special purpose in the GPU.
Register memory (also called private or local) is the memory
available to each thread and cannot be accessed by any other
thread. It stores variables, which are specific to that thread,
such as thread ID, block ID and any other private variables
significant for the thread. Shared memory is designed to store
data that can be shared among threads belonging to the same
block. It enables thread communication and is extremely useful
in calculations based on mathematical reduction, such as ma-
trix operations. Global memory is accessible by all threads and
host. It is used to copy data from/to host and usually stores the
user data of input and output of the application. The fact, that
global memory and shared memory have difference in speed
of access by several orders, many levels of optimization can
be achieved by careful tuning of parameters such as amount
of shared memory, number of threads/block and number of
streams. For example maximizing accesses of shared memory
over the global memory leads to significant performance gains,
since access to the shared memory is about 100 times faster
than the global memory. Our tests were mainly comprised of
matrix-vector multiplication A« - Tnx1 = 5,,LX1 kernel (1),
where we are able to change the size of the problem and
explore different modes of operation by choosing various types
of global memory allocation and having shared memory as an

S~ Global memory kemel

> - Shared memory kemel

Execution time [ms]

0 L L L
2000 3000 4000 5000 6000 7000 8000 9000 10000
Vector size

Fig. 1: Matrix-vector multiplication performance: Shared
memory vs Global memory
option.
A1,1 Al,n T by
: : =1 o
Amﬂ Am,n Tn bm,

where vector Z is accessed multiple times during operation,
which signifies it can be pre-loaded from Global memory to
much faster Shared memory and therefore execution time is
reduced. Our first test was conducted in order to estimate
performance gains, when Shared memory is involved into
computation (Fig. 1). Another optimization can be achieved

150

Execution time [ms]

0 L L L
2000 3000 4000 5000 6000 7000 8000 9000 10000
Vector size

Fig. 2: Matrix-vector multiplication performance using various
types of memory allocation

by balancing the amount of overhead spent on transferring
information back and forth between the GPU global memory
and CPU RAM. By varying the type of GPU global memory
allocation (pageable, page-locked, write-combined, directly
mapped) we compared the performances of the same matrix-
vector multiplication kernel (Fig.2).

Pageable allocation is the default type of allocation and the
most commonly used. It is the type of allocation that is freely
managed by the system, i.e. it can be moved and reallocated
by internal system processes, which are transparent to the
user. Page-locked allocation does not allow the system to
page the memory, also called “pinned” allocation, i.e. it is

fixed to a physical memory address that does not change. In
most systems page-locked allocation results in speed up of
applications, since system does not perform paging on that
memory and data can copied faster via DMA circuit without
involvement of CPU. Write-combined allocation is special
type of allocation, which is a good option for one-way transfer
from CPU to GPU. Directly mapped allocation is a type of
allocation, which allows to tie CPU RAM and GPU RAM
directly. In this way the programmer does not have to manually
code the memory transfer from host to GPU anymore. System
will manage copying automatically, i.e. whatever gets written
in CPU RAM will automatically appear on GPU RAM. In
our test the directly mapped allocation performed the worst,
while other allocations perform much better and identically
between each other. We think that directly mapped allocation
results in multiple calls of internal copy operations of small
size, which builds up the latency. The other three allocations
can only perform in such similar manner when the memory
paging is not present in the system. We believe it is the case.

IV. MARTE FRAMEWORK AND GPU

The Multi-threaded Application Real-Time executor
(MARTe) is a C++ framework that provides a development
environment for the design and deployment of real-time
applications, e.g. control systems. The kernel of MARTe
comprises a set of data-driven independent blocks, connected
using a shared bus. A MARTe application is designed by
configuring and connecting a series of blocks named Generic
Application Modules (GAM). MARTe and GPU have a
compatibility issue. Firstly MARTe does not yet provide
interface to access GPU resources and secondly CUDA code
can only be compiled with a proprietary compiler nvcc from
Nvidia. However these issues can be overcome by external
compilation. We managed to wrap CUDA commands into
C++ functions and compile it externally with nvcc to an
object. Then the object was linked to a MARTe GAM during
compilation of the GAM. In such a way GAM is able to
call wrapper functions, which contain CUDA code that was
compiled externally by nvcc.

V. HARDWARE

Nvidia Tesla K40 was used for running performance tests

(Fig. 1,2,5,6,7). Tesla K40 is one of the latest Nvidia products
for HPC built on Kepler architecture and released in 2014. It
runs on 745 MHz clock with 12 GB of RAM and 48 kB of
shared memory.
Nvidia GeForce GTX 480 was used for real-time tomography
application (Fig. 3). GeForce GTX 480 is a graphics card origi-
nally designed for gaming purposes built on Fermi architecture
and released in 2010. It runs 700 MHz clock with 1.5 GB of
RAM and 48 kB of shared memory.

VI. REAL-TIME GPU APPLICATIONS

There are a number of real-time domains where GPUs may
be applied. GPU can efficiently carry out digital signal pro-
cessing operations and matrix operations of large size. These
operations, coupled with other GPU-efficient algorithms, can

be used in medical imaging, video processing and data pro-
cessing.

As members of fusion community hereby we present a real-
time application being developed for plasma control purposes
on the basis of GPU computation. The application runs an
algorithm of plasma tomography on ISTTOK tokamak (Fig. 3).
Signals are produced by 3 detectors with linear arrays of 16
sensors each sensitive to the intensity of plasma emission.
Each cycle a signal of 48 channels (3x16) arrives to the data
acquisition system.

The signal f is received by MARTe framework and imme-

ATCA Chassis

<-

GPU

1/ Cards

ADCs + FPGA |55

Processing Node
(ATX Motherboard +
PCle Adapter)

Fig. 3: Tomography data acquisition ATCA system installed
in ISTTOK

diately copied to the GPU, where multiplied with so-called
pseudo-inverse contribution matrix C* produces tomographic
coefficient vector d.

i=C*t-f)
Then the so-called synthetic signals are calculated by the
original un-inversed contribution matrix C.

F=C-a 3)

Our goal is to choose the best-fitting subset of coefficient

vector d. It is performed by comparing signal data f with

all sets of the synthetic signals f in term of statistical error

x> . ,
2 fi—fi
=2 (g) : @)
K3

where S is the number of sensors in the system (dimension of
signal vector f) and o is the standart deviation of the signal,
which relates to noise level present in the system. According
to minimum of x? a corresponding subset of @ is selected for
the reconstruction. The selected subset of @ is then multiplied
with so-called basis matrix B, which results in a reconstruction
image ¢ (5). Image ¢ then is copied back to the host.

j=B-a, 5)

a* is a subset of @. Contribution matrix C, its pseudo-inverse
C* and basis matrix B are pre-loaded to GPU before the
real-time phase and do not need updating during execution
of the algorithm. This algorithm contains three kernels based
on matrix-vector multiplication and two data copy operations
(one for arriving f and one for exporting g).

We would like to demonstrate that such applications have an
inherent memory bottleneck due to data transfer between CPU
and GPU in real time. We separately measured the durations

Execution time [ms]

L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
Vector size

Fig. 4: Demonstration of inherent bottleneck in real-time
reconstruction algorithm, where 3 kernels perform faster than
2 memory transfers

of kernels and memory transfer (Fig.4). Our application
demonstrates a common nature of GPU applications based on
matrix-vector multiplication, where processing is faster than
data transfer. We would like to extend this knowledge to more
general class of algorithms called state-space based control
algorithms.

VII. STATE-SPACE BASED CONTROL ALGORITHMS

State-space based control algorithms are the most used type
of control algorithms in fusion. They usually are described
by a generic matrix and an input vector. The product of
them gives the feedback (control actuation) to the system.
We would like to discuss the general applicability of these
algorithms to CPU and GPU. As already discussed GPU
based real-time applications usually have an inherent memory
bottleneck. Anyway GPU kernels alone offer great processing
speeds because of their massively parallel nature. On the other
hand CPU virtually has no memory bottleneck, yet a single
CPU is not capable to process big data fast enough. As real-
time application developers we would like to explore, how
multi-threaded CPU would perform under same load versus
GPU code. Here we present a comparison between single-
threaded CPU, multi-threaded CPU and GPU performances
(Fig.5). Obviously single-threaded CPU falls far behind, but
its sole purpose is to give reference. We can observe an
interesting feature of GPU and of multi-threaded CPU perfor-
mances. They are practically similar along the whole range
of input vector dimension. This fact implies that matrix-
vector multiplication is a border line application, where CPUs
and GPUs are equally computationally capable. GPU would
still be a favorable choice for an extremely high degree of
computation, because the number of threads that GPU can
have is virtually unlimited, while CPUs have limited amount
of threads by design. However real-time applications may
not require such a high throughput, therefore multithreaded
CPU can be sufficient in terms of computation and absence
of memory bottleneck. An as well a developer would escape
the need to learn GPU programming (which is quite different
from CPU programming).

sol o~ GPU

> = CPU single-threaded
cPU ded

Execution time [ms]

=S

10 -2

= -@-- L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Vector size

Fig. 5: Comparison of performance of GPU and multithreaded
CPU

VIII. JITTER

Jitter is another very important parameter describing perfor-
mance of a real-time system. Jitter is the variation of latency.
A short latency does not yet guarantee reliable performance of
the system, unless jitter is contained in certain limits. As an
example we demonstrate jitter of a test kernel running matrix-
vector multiplication with shared GPU memory versus global
GPU memory without memory transfer (Fig.6). Not only

Shared vs Global

[Global memory kemel

[Shared memory kemel

S
8

Fraction %

o - P . ,
0 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08
Execution time [ms]

Fig. 6: Jitter of matrix-vector multiplication using Shared
memory and Global memory without memory transfer

usage of shared memory results in faster execution (Fig. 1),
but it also reduces jitter of the overall performance (Fig.6).
However if we include memory transfer in the measurements,
we observe much more variance in the jitter and much slower
executions overall (Fig. 7).

IX. CONCLUSION

We hope we provided some valuable insights and discus-
sions regarding nature of GPU applications in real-time. The
results of this work can be concluded to:

¢ CPU and GPU can be equally exploitable for a matrix-
vector multiplication based algorithms, unless required
throughput is extremely high. Then GPU is more
favourable option.

- -

© (d)

Fig. 7: Jitter of matrix-vector multiplication kernel using vari-
ous types of Global memory allocation with memory transfer
included: a) Pageable b) Page-locked c) Write-combined d)
Directly mapped

o We presented probably the first real-time GPU application
in fusion community.

o Advantages of GPU computing in real-time are only
available for a trade-off of a memory bottleneck.

o We presented an important insight into applicability of
state-space based algorithms to CPU and GPU, which can
be useful for developer when choosing between CPU and
GPU as the computation platform.

