A VXS [VITA41] TRIGGER PROCESSOR FOR THE **12GEV EXPERIMENTAL PROGRAMS AT** JEFFERSON LAB

B. Raydo, <u>C. Cuevas</u>, D. Abbott, B. Moffit, J. Wilson, S. Boiarinov

Group Leader – Fast Electronics Experimental Nuclear Physics Division

homas Jefferson National Accelerator Facility

Page 1

OUTLINE

- 1. Overview: Jefferson Lab @12GeV
- 2. 12GeV Trigger Processing System Description
- 3. 2nd Generation VXS Switch Slot
- 4. Engineering Merging the Switch Slot Designs
- 5. VTP performance and features
- 6. Summary

Page 3

U.S. DEPARTMENT OF ENERGY

New Capabilities In Halls A, B, & C, & New Hall D

9 GeV tagged polarized photons and a 4π hermetic detector

Super High Momentum Spectrometer (SHMS)

Precision determination of valence quark properties.

R

Office of Nuclear Phys.

D

CLAS upgraded to higher (10^{35}) luminosity and coverage

Exploring origin of

studying exotic mesons.

confinement by

High Resolution Spectrometer (HRS) Pair, and large installation experiments

Nucleon structure via generalized parton distributions.

2016 IEEE RT Conference, Padova, Italy

Thomas Jefferson National Accelerator Facility

Page 4

Trigger Processing Implementation – JLAB @12GeV

Hall D Level 1 Trigger

CLAS12 DAQ Readout Rates

DAQ Module (QTY)	Channel Count	Detector(s) ²	Raw Data Rate	Triggered Data Rate (@20kHz)
FADC250 (~250) 16 channel, 12bit ADC 250Msps	~4,000	ECAL, PCAL, FTOF, CTOF, HTCC, LTCC, FT, CND	~1.5TB/s	~3Gb/s (no zero suppression, 100ns raw) ~30MB/s* (100ns raw) ~3MB/s* ("fit" pulses)
DCRB (252) 96 channel, amplify/discriminate 1ns TDC	24,192	Drift Chamber	~1GB/s ¹	~20MB/s ¹
VSCM (33) 1024 SVT FSSR ASIC channels	33,792	SVT	~10GB/s ¹	~40MB/s ¹
RICH FPGA (140) 192 channel MAPMT readout 1ns TDC	25,024	RICH	~10GB/s ¹	~20MB/s ¹

Standard CLAS12 experiments achieve massive data rate reduction in a triggered system (for relatively low trigger rates)

> ¹ data rate for each 1% occupancy of detector ² not all CLAS12 detectors or DAQ modules listed

Page 8

Thomas Jefferson National Accelerator Facility 2016 IEEE RT Conference, Padova, Italy

1st Generation Crate Trigger Processor

- Board includes:
 - 2 VirtexV FX70T
 - 1 VirtexV FX100T
 - 5Gbps link to FX70T on FADC250 boards
- Crate Trigger Processor computes a crate-level energy sum (or hit pattern)
- Computed crate-level value sent via 8Gbps fiber optics to Global Trigger Crate (32bits every 4ns)

VXS Connectors Collect serial data from 16 **FADC-250 2 Full Duplex** 'Lanes" @5Gbps

- Control registers read/write via I2^C to VME controller
- No Ethernet interface
- Hall D uses 25 units
- Hall B requires 38 units

Page 9

1st Generation <u>G</u>lobal <u>Trigger</u> <u>Processor</u>

- I^2C to VME controller
- 1Gb Ethernet Front Panel
- Linux OS (Altera NIOS)
- 1 board per Hall
 -Top Level Trigger Device

- 32 LVPECL outputs to Trigger
 Supervisor (Densi-shield connector
- 2 x 5Gbps VXS interface (Aurora)

Thomas Jefferson National Accelerator Facility

Page 10

Merging Designs {CTP + GTP}→VTP Logical Diagram

Hall B – VTP "The Art of Electronics"

Office of Nuclear Physics

Thomas Jefferson National Accelerator Facility

Page 12

Hall B – VTP "The Art of Electronics Needs Cooling"

Office of Nuclear Physic

Page 13

Thomas Jefferson National Accelerator Facility

Hall B – VTP **Engineering Issues**

Page 14

VITA41 "VXS" Switch Module

- **Only +5VDC available**
- **Custom Heat sink Design**
- **Machined Aluminum**
 - Contact with Virtex 7, Zynq, and **Regulators**
- **Power dissipation: Up to 40 Watts**
- **20 layer board**
- 94 mil PCB thickness
- FR408HR Material
- 7263 holes. MIN hole size 8mil
- Full Assembly cost (Qty < 50): <u>~\$7K (USD)</u>
 - Includes:
 - Virtex 7 '550T
 - Heat sink, front panel
 - Solder, Stencil, X-Ray

Thomas Jefferson National Accelerator Facility

B. Raydo

DDR3-1600 Trace/Package Deskewing:

DDR3-1600 byte eye before deskew:

DDR3-1600 byte eye after deskew:

High Speed Serial – The Future B. Raydo No VME controller – VTP For Control/Readout/Trigger J. Wilson Virtex 7 - IGHz Dual Core ARM

<u>VXS TRIGGER PROCESSOR</u> Complex High Level Trigger Applications

• Energy sum, $E_{min} \leq E_{top} + E_{bottom} \leq E_{max}$

Trigger Cuts:

- Pair time coincidence, $|t_{top} t_{bottom}| \le \Delta t_{max}$
- Energy difference, $|E_{top} E_{bottom}| \le \Delta E_{max}$
- Energy slope, $E_{cluster_with_min_energy} + R_{cluster_with_min_energy} \times F_{energy} \le Threshold_{slope}$
- Co-planarity, $|tan^{-1}(\frac{X_{top}}{Y_{top}}) tan^{-1}(\frac{X_{bottom}}{Y_{bottom}})| \leq Coplanarity_{angle}$
- Number of hits in 3x3 window, $\#hits_{3\times 3} \ge HitThreshold$

Drift Chamber Trigger (Segment/Track Finding):

CLAS12 Drift Chamber (1 sector/1 region shown) 1344 Anode wires

x14 DCRB 96-CH 1ns TDC

VTP

Reports track segment position and angle to next stage trigger

Thomas Jefferson National Accelerator Facility

Page 17

Summary

- VXS solution for 12GeV DAQ and Trigger Electronics has been proven
 - Robust, high reliability serial back-planes, QSFP (optical) transceivers
 - Extremely low failure rate
- VXS offers elegant high speed serial links from each payload slot
 - We use these Gigabit serial links for L1 Trigger Decisions
 - VTP will be used as Event Readout controller
 - Serial connectivity easily surpasses VME 2eSST data rate
 - VTP includes 40GbE port to stream event data
- VTP will support complex high level trigger algorithms at the 'crate' level
 - Process trigger information from multiple crates for large detectors
 - Combine detector sub-systems for Global Trigger
- VTP production boards are scheduled for delivery mid-summer
- Questions?

BACK-UP

Modern Method of Signal Capture

- 250MHz Flash ADC stores digitized signal in 8µs circular memory.
- Physics "Event" extracts a window of the pipeline data for pulse charge and time algorithms
- Trigger output path contains detailed information useful for cluster finding, energy sum, etc.
- Hardware algorithms provide a huge data reduction by reporting only time & energy estimates for readout instead of raw samples

Comparison to CLAS in Hall B

Hall D-GlueX **Channel Count:** ~20k **Event Size:** ~15kB 200kHz 3GB/s L3, 20kHz, 300MB/s

Hall B-CLAS ~40k ~6kB 10kHz **60MB/s** L2, 10kHz, 60MB/s

L1 Rate:

L1 Data:

To Disk:

Thomas Jefferson National Accelerator Facility

Page 21

Flash ADC 250MHz

- 16 Channel, 12-bit
 - 4ns continuous sampling
 - Input Ranges: 0.5V, 1.0V, 2.0V (user selectable via jumpers)
 - Bipolar input, Full Offset Adj.
 - Intrinsic resolution $-\sigma = 1.15$ LSB.
 - 2eSST VME64x readout
 - Several modes for readout data format
 - Raw data
 - Pulse sum mode (Charge)
 - TDC algorithm for timing on LE
 - Multi-Gigabit serial data transport of trigger information through VXS fabric
 - On board trigger features
 - Channel summing
 - Channel coincidence, Hit counters
 - 2 Pre-production units extensively tested
 - Automatic Test Station is complete
 - Engineering Run 40 Delivered!
 - 18 Hall D
 - 17 Hall B

Thomas Jefferson National Accelerator Facility

- 685 Boards for all Halls
- Production Procurement FY12 (>\$2M).

Page 22

CLAS12

DAQ

- Forward carriage DAQ electronics installation is almost complete, remaining electronics (VTPs) are ordered and will be installed within few month
- Space Frame and Subway DAQ electronics installation in progress
- Fiber Ethernet and trigger network complete
- Counting room complete
- DAQ software is operational, development continues
- ECAL, PCAL and FTOF detectors are taking data; CTOF, DCRB, SVT, etc. tests

Two DAQ Crate Testing: FY11

Pipelined DAQ & Trigger Architecture

- All channels are continuously sampled and stored in a short term circular memory

- Channels participating in trigger send samples to trigger logic. When trigger condition is satisfied, a small region of memory is copied from the circular memory and processed to extract critical pulse details such as timing & energy. This essentially makes the event size independent of ADC sampling rate, depth, and number of processed points.

SCOPE OF 12 GeV UPGRADE

Parameter	Present JLab	Upgraded JLab
Number of Halls	3	4
Number of passes Halls A/B/C	5 (for max energy)	5 (for max energy)
Max Energy to Halls A/B/C	up to ~6 GeV	up to ~11 GeV
Number of passes to Hall D	New Hall	5.5
Energy to Hall D	New Hall	12 GeV
Current – Hall A & C	max ~180 µA combined	max ~85 μA combined (higher at lower energy)
Current – Hall B & D	(B) Up to 5 μA max	(B, D) Up to ~5 μA max each
Central Helium Liquefier (CHL)	4.5 kW	9 kW
# of cryomodules in LINACS	40	50
Accelerator energy per pass	1.2 GeV	2.2 GeV

Routinely provide beam polarization of ~85% now, same in 12 GeV era

Page 26

Thomas Jefferson National Accelerator Facility

3.5 FADC Sampling – Timing Accuracy

Hall D FCAL PMT: FEU 84-3

- Timing algorithm developed & tested by Indiana University for the Hall D forward calorimeter.

- Implemented on the JLab FADC250 hardware achieving <300ps timing resolution on 50% pulse crossing time with varied signal heights.

GlueX Data Volume

3.4 FADC Sampling – Charge Accuracy

Hall D FCAL PMT: FEU 84-3

-10,000 Random height pulses 10-90% full scale of ADC range simulated

- Sampling frequency makes little difference beyond 250MHz at 12bit, providing ~0.1% charge resolution

- PMT pulse shape dominates sample frequency and bit depth of ADC

