Exploring RapidIO technology within a DAQ
system event building network

Simaolhoda Baymani, Konstantinos Alexopoulos, Sébastien Valat

Abstract—Exploring RapidlO RapidIO (http://rapidio.org/)
technology is a packet-switched high-performance fabric, which
has been under active development since 1997. The technology
is used in all 4G/LTE basestations worldwide. RapidIO is
often used in embedded systems that require high reliability,
low latency and deterministic operations in a heterogeneous
environment. RapidlO has several offloading features in
hardware, therefore relieving the CPUs from time-consuming
work. Most importantly, it allows for remote DMA and thus
zero-copy data-transfer. In addition it lends itself readily to
integration with FPGAs.

In this paper we investigate RapidO as a technology for
high-speed DAQ networks, in particular the DAQ system
of an LHC experiment. We present measurements using a
generic, multi-protocol event-building emulation tool which was
developed for the LHCb experiment.

Event building using a local area network, such as the one
foreseen for the future LHCb DAQ puts heavy requirements on
the underlying network as all data sources from the collider
will want to send to the same destinations at the same time.
This leads to an instantaneous overcommitment of the output
buffers of the switches.

We will present results from implementing a event building
cluster based on RapidIO interconnect, focusing on the band-
width capabilities of the technology as well as the scalability.

I. INTRODUCTION

RapidIO is a high-performance, low pin count, packet
switched system level interconnect standard. RapidlO
promises the combined strengths of PCI Express and Ethernet
while at the same time offering support for heterogeneous
systems. The above together with the inherent support for error
handling at the hardware level, motivates a closer investigation
of the technology and in particular its suitability in the
high-speed network domain, where speed and robustness are
essential. [1]

Simaolhoda Baymani is with the IT Department, European Organization for
Nuclear Research, Geneva, CERN CH-1211 Geneva 23, Switzerland (e-mail:
sima.baymani @cern.ch)

Konstantinos Alexopous is with the IT Department, European Organization
for Nuclear Research, Geneva, CERN CH-1211 Geneva 23, Switzerland. He
is also with the Electrical and Computer Engineering Department, National
Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou,
Greece (e-mail: konstantinos.alexopoulos @cern.ch)

Sébastien Valat is with Experimental Physics Department, European Orga-
nization for Nuclear Research, Geneva, CERN CH-1211 Geneva 23, Switzer-
land (e-mail: sebastien.valat@cern.ch)

This project aims to explore RapidlO in different domains
of network applications. In this paper we will present the work
done in the fields of data analytics and data acquisition.

Guaranteed
Delivery

Hardware
Terminated

Low
Latency

Scalability

Fig. 1. RapidlO vs PCle vs Ethernet. Image source: IDT.
Chassis-te-Chassis T
y
7,//
apidlO
Board-to-Board L3
i /
L } J o/
N 1
_
Fig. 2. Interconnect Application Domains[6]

A. The Protocol

The RapidIO protocol is based on request and response
transactions. The communication elements between the var-
ious end point devices in the system are packets. Control
symbols are used for packet acknowledgment, flow control
information and maintenance functions. All error handling
is done at the hardware level. Notable logical operations
introduced in the protocol specification include Read/Write
operations (Direct Memory Access) and Messaging (Channel-
ized Messaging). Speeds of 1.24-10.3125 GBaud per lane are
achievable according to the latest protocol specification. [2]

B. The Interface

User-space programs normally access the interconnect via
library calls. The individual library calls interface the un-

978-1-5090-2014-0/16/$31.00 © 2016 IEEE

derlying driver, which handles the creation and termination
of connections, as well as the orchestration of Channelized
Messaging (CM) and remote DMA operations (from now
referred to as rDMA).

C. The Setup

Our hardware setup consists of a 2U Quad unit with four
Intel Xeon L5640@2.27GHz nodes, each with 48GB of RAM.
Each server is equipped with an IDT Tsi721 PCle to RapidlO
Bridge, offering speeds at 14.5 Gbps. The nodes are connected
to a 38-port Top of Rack (ToR) RapidlO Generation 2 switch
box using QSFP+ cables. The switch ports offer speeds at
20Gbps. The speed difference between the switch port and
the PCle bridge are due to PCle bus limitations.

The servers run on CERN CentOS release 7.2.1511. The
RapidIO software stack used is Linux kernel drivers and
libraries provided by IDT. This software package is under
development.

II. ROOT

ROOTT(3] is a data processing framework developed at
CERN. Originally targeted at data analysis and simulations
related to high-energy physics, ROOT is now used by nu-
merous teams around the world in applications ranging from
data mining to astronomy. For the project described ROOT has
been extended to use the RapidIO protocol instead of TCP/IP,
for transactions between two or more of its instances. For our
purposes two implementations have been developed: one is
utilizing CM and the other rDMA. Two important factors that
influenced the respective designs were:

1) ROOT’s internal bookkeeping and layering conventions

2) Limitations imposed by the current RapidIO library

implementation

A. Channelized Messaging Implementation

The Channelized Messaging implementation is comprised
of consecutive send and receive function calls for the maxi-
mum discrete buffer size until the entirety of the data has been
propagated to the other side. Every message is acknowledged
in order to achieve synchronization.

B. Direct Memory Access Implementation

The rDMA implementation is based on the same principle as
the CM implementation. Consecutive writes of the maximum
possible size are performed until the entirety of the data
has been written to the target memory destination. Messages
have been used for inititating and acknowledging every rDMA
operation.

C. Benchmarking

In order to evaluate RapidlO’s performance for this partic-
ular extension of ROOT, the following scenario was outlined.
A single server - multiple clients topology was set up. The
server is running an instance of ROOT, which is accepting
connections and, consecutively, data. The clients are sending
data to the server concurrently.

The above has been used to evaluate the performance of
both the CM and the rDMA implementation.

D. Results

medium_quad

128

1/client
118 stdev[120.0-123.0

2 clients
stdev[123.0-126.0]
3 clients
stdev[118.0-127.0]

® R W® ® © Q ®
qu\# @w\e \;Lw‘\ »@i\ mp\‘\ ’L‘b“‘\ ,ng‘\
N 3

Mean speed per iteration (MBps)

W
’5,} ’;\ [
Transaction size

Fig. 3. ROOT - CM
medium-large
1200
a
£1150
=

1000

1 client
stdev[930.0-1159.0]
2 clients
stdev[973.0-1175.0]
3 clients
stdev[946.0-1181.0]

RPN PR PR
NN e L R K S
Transaction size

© O
[V =)
==l

Mean speed per iteration
<}
w
o

800 2 ey
W
o o

Fig. 4. ROOT - tDMA

On figures 3 and 4 the results for a certain range of
transaction sizes for both implementations are shown.

E. Conclusions

In order to correctly evaluate benchmarking results several
factors need to be taken into account.

o ROOT utilizes its internal bookkeping. The various inter-
nal operations that are performed by ROOT can introduce
an important overhead, which may skew the results.

o ROOT is a user-space application, managed by the Linux
kernel. Scheduling operations can affect the performance
of different transactions, introducing minor differences
between each run.

Due to factors such as those stated above utilization close to
the nominal was not achieved. However, a significant differ-
ence in speed was observed between the CM and the rDMA
implementation, with the first maxing at around 120MBps and
the second around 1000MBps. This is expected, as CM oper-
ations are targeted to orchestration, whereas rDMA operations
are targeted to data transfers.

ITIT. DAQPIPE

LHCb-DAQPIPE, DAQ Protocol-Independent Performance
Evaluator, is a benchmark application to test network fabrics

for the future upgrade of the LHCb experiment at CERN.
DAQPIPE emulates an event-builder based on a local area
network, such as the one envisioned in the LHCb upgrade.
The application is protocol, topology and transport agnostic,
allowing for multidimensional testing of an interconnect. Sev-
eral technologies have already been ported to DAQPIPE for
evaluation.[4]

The event-building network itself is a fully connected
network where nodes receive data from the readout system.
This data is subsequently sorted into events. Data for one
event may be spread out over several nodes and first has to
be aggregated. The aggregation can be configured in many
ways, with different aggregation protocols, memory layouts
and network topologies. DAQPIPE has a large set of config-
uration parameters which allow for thorough testing of which
parameter set that gives the most optimal results for a specific
interconnect.

Node 0 Node 1
Builder Unit Readout Unit Builder Unit Readout Unit
a5 GO] o]
N wwiie |

R:Read |

Fig. 5. Data aggregation in DAQPIPE|[S5]

A. Implementation

DAQPIPE was ported to RapidIO using both Channelized
Messages and rDMA. Channelized Messages were used for
commands, which are used to organize the event building and
rDMA buffers were used as data buffers. Threads were used
to synchronously handle connection operations.

Following the main porting work, the following limitations
in the RapidIO library created the need for two variants of the
port:

1) Due to a combination of restrictions in the Linux kernel
and the current RapidIO library implementation, there is
a maximum size of 2MB for each rDMA allocation

2) Due to hardware constraints, there can be maximum 8
rDMA allocations at one time

In the standard implementation of DAQPIPE, each node will
have a read and write buffer. The read buffer contains the
readout data, i.e. parts of an event. The write buffer is for
aggregating this event data into a full event. Nodes use offsets
to write the event data into the corresponding address of the
recipient node. With limited buffer size, each node can only
collect a certain number of events.

In the alternative implementation, each node will instead
have multiple write buffers, also called segments, which allows
for a larger accumulated buffer size. However, the number
of allocations need to obey the maximum limit. Thus, this
solution limits the number of readout cards that can be
connected to each unit.

B. Benchmarking

DAQPIPE was run with both implementation versions
across several sets of configurations, alternating between three
and four nodes. Benchmarking parametrization was influenced
by library limitations.

C. Results

On figure 6 results are shown for the multiple segments
implementation. As can be seen, the curve has not yet reached
a stable state but is still reaching upwards pointing to a high
probability of higher speeds if the allocation constraints are
removed.

Multisegment DAQPIPE, varying sizes

~— 3 nodes
e 4 nodes

©

~

N W 1O

=

Mean speed per iteration (Gbps)

0
Nl N g N
Q)b‘ ’\}% ’If’b (’)\flz '\“\ '73‘\
Buffer size

Fig. 6. Multisegment DAQPIPE with varying sizes

D. Conclusions

The DAQPIPE architecture uses commands to orchestrate
the event data aggregation. Event data is subsequently stored
in memory segments. In this sense, RapidlO CM and rDMA
features fit well with the paradigms used by DAQPIPE. The
need for an alternative write segment layout brings another
interesting aspect into view, namely how the interconnect
handles multiple, concurrent allocations.

ACKNOWLEDGMENT

The authors would like to thank Mohammad Akhter,
Alexandre Bounine, Devashish Paul, Barry Wood from Inte-
grated Device Technology and Olof Birring, Niko Neufeld
and Alexandru Grigore from the European Organization for
Nuclear Reasearch, for their support and collaboration. The
authors would also like to thank IDT for its membership and
technical collaboration with CERN openlab.

REFERENCES

[1] Architecture and Systems Platform, RapidlO™: An Embedded System
Component Network Architecture. Motorola Semiconductor Product Sec-
tion. [Online]. Available: http://www.cs.ucr.edu/ mart/CS260/rapidIO.pdf

[2] RapidlO.org, RapidlO™ Interconnect Specification Version 3.1. [Online].

Available: http://www.rapidio.org/wp-content/uploads/2014/10/RapidIO-

3.1-Specification.pdf

Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data

Analysis Framework, Proceedings ATHENP’96 Workshop, Lausanne, Sep.

1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See also

http://root.cern.ch/

3

—

(4]

(5]

(6]

D. H. Campora Perez, R. Schwemmer, N. Neufeld Protocol-Independent
Event Building Evaluator for the LHCb DAQ System, Realtime Confer-
ence, 2014.

D. Campora, S. Valat, B. Voneki, S. Baymani, LHCB-DAQPIPE
Wiki. [Online]. Available: https://gitlab.cern.ch/svalat/Ihcb-dagpipe-
v2/wikis/home

G. Shippen, System Interconnect Fabrics: Ethernet versus RapidlO™
Technology, Freescale Semiconductor Inc. [Online]. Available:
http://cache.freescale.com/files/32bit/doc/app_note/AN3088.pdf

