

Unified Communication Framework

Dominic Gaisbauer, Yunpeng Bai, Igor Konorov, Dmytro Levit, Dominik Steffen

d.gaisbauer@tum.de

Technische Universität München

Institute for Hadronic Structure and

Fundamental Symmetries

Padova, June 6th, 2016

Status Quo of DAQ Topologies

- One link for trigger and timing messages
- One link for slow-control messages
- Multiple data links
- Underlying principle is similar in many experiments, e.g.
 BELLE II, COMPASS, LHC experiments, ...
- Why not combine slow control, trigger, timinig, and data in a single link?

Unified Communication Framework (UCF)

- Originates from the SODA time distribution system developed for the PANDA experiment
- Single high-speed serial link for data, slow control, trigger, and timing information
- Up to 64 different communication channels (e.g. JTAG, I2C, SPI, ...)
- Fixed latency for one channel
- Priority handling for all channels
- Self recoverable after connection losses

UCF – Example Topologies

- Point-to-Point topology:
 - Single or multiple 1:1 connections
 - Frontend data concentrator apllications, ...
 - Bidirectional on all channels

UCF – Example Topologies

- Star-like topology:
 - Single 1:n connections
 - Experiments with low data rates, ...
 - Time distribution systems
 - Slaves share link in time division manner
 - Bidirectional on all channels

UCF – Example Topologies

- Hybrid topology:
 - Combination of point-to-point and star-like topologies
 - System-in-a-system applications
 - Bidirectional on all channels

UCF – Low Layer Protocol

- Backbone of UCF
- Handles communication and initialization
- 8b/10b encoding scheme
- 10b K-characters for control and synchronization
- Protocol frames consist always of sequence of several characters:
 - Start of frame
 - Type of the message (either specific destination or broadcast)
 - Protocol identifier
 - Payload
 - Remainder defining the valid bytes in the last transmission
 - End of frame

UCF – Initialization

- Fixed phase synchronization by sequence of two defined K-characters (x"BCDC")
- Synchronization character will be send for specific time to let the slaves synchronize
- Attached slaves are scanned by sending an initialization frame containing different DNAs and waiting for response
- DNA is the serial number of an FPGA
- Unique ID and IP assignment for all connection parties

UCF – Priority Handling

- All 64 communication channels have different priorities
- Protocol 0 has the highest and then it cascades down to the protocol 63 which has the lowest priority
- Frames with higher priority are inserted into lower priority frames
- Maintains fixed latency for the timing channel

SOF	ТҮРЕ	ID	x"0001"	x"0203"
SOF	ТҮРЕ	ID	x"0001"	x"0203"
x"0405"	x"0600"	REM	EOF	x"0405"
x"0000"	REM	EOF		

UCF – User Interface and Configuration

- All channels are addressed via the standardized ARM AMBA AXI4 interface
- Leads to easy interfacing with other IP-Cores
- Configuration of all parameters within one file:
 - Link speed
 - Topology
 - Device type (Spartan6, Virtex6, Artix7)
 -

```
package ConfigUCF ucf is
constant strDeviceType
                                     : string
                                                                            := "Virtex6";
constant stdActivateP2P
                                     : std logic
                                                                            := '1';
constant stdCardPurpose
                                     : std logic
                                                                            := '0';
constant intTransceivers
                                     : integer
                                                                            := 1;
                                                                            := 1;
constant intInterfaces
                                     : integer
constant intCylcesMin
                                     : integer
                                                                            := 8;
--!Data width settings for User
constant intDataWidthUsr
                                     : integer
                                                                            := 32;
constant intByteWidthUsr
                                     : integer
                                                                            := 4;
constant intSerials
                                     : integer
                                                                            := 1;
                                       is array (integer range <>) of std logic vector(63 downto 0);
type
         dna type
                                       dna_type(intSerials downto 0) :=(( x"0000000000000000000000000000000),
constant DNAs :
```


UCF – Tests and Measurements

- Point-to-Point topology with 1 slave and 1 master
- Virtex 6 as slave and master
- 2.5 Gbit/s link speed
- Recovered clock jitter (σ) of 23 ps
- Requires 2 % slice register and 4 % slice LUT utilization on a Virtex 6 LX130T

UCF – Tests and Measurements

- Star-like topology with 12 slaves and 1 master
- Spartan 6 FPGA as slave and Virtex 6 as master
- 1.25 Gbit/s link speed
- Switching time of 16 µs (includes character transmission and synchronization)
- Long term stability test with 99 % link utilization over two weeks
- Forwarding of JTAG possible with up to 100 kHz JTAG frequency
- IPBus over UCF

Transmission Time [µs]	Efficiency [%]	
25000	99,93	
10000	99,84	
1000	98,42	
500	96,90	
100	86,20	

UCF - PENeLOPE

Precision Experiment on Neutron Lifetime
 Operating with Proton Extraction

500 Mbit/s

Slaves read out in Round-Robin manner

 Distribution of random trigger and global clock with determined latency

IPBus connection

UCF – Belle II Pixel Detector

- Point-to-Point topology with 1 DHC and 5 DHE
- 22 GB/s data rate of the detector
- 6.5 Gbit/s link speed
- IPBus, data and trigger distribution
- Tested complete readout chain from simulated detector data over DHE and DHC to PC

UCF – Conclusion

- IP-Core providing unified communication of up to 64 channels via a single optical link
- Fixed latency for one channel
- 23 ps recovered clock jitter
- Standardized ARM AMBA AXI4 interface for user
- Multiple 1:n and 1:1 connections possible
- Typically 98 to 99 % link utilization efficiency for star-like topologies (16 µs switching time)
- JTAG with 100 kHz frequency
- IPBus
- Tested set-ups for Belle II and PENeLOPE successfully in the lab

UCF – Outlook

- Addtional CRC check integration to UCF
- Integration of UCF in the NA64 experiment in 2016
- Beam test with the Belle II set-up at the end of 2016
- Integration of the PENeLOPE set-up into the experiment at the end of 2017
- Integration of UCF in the COMPASS experiment in 2016/2017
- Will be published as an open source project after commissioning during the Belle II beam test
- Poster by Igor Konorov about the Intelligent FPGA based Event Builder and Data Acquisition System for the COMPASS experiment on Thursday 9th of June
- Poster by Dmytro Levit about the Intelligent FPGA Data Acqusition Framework on Thursday 9th of June

Thank you for your attention

