
Embedded Implementation of a Real-time
Switching Controller on a Robotic Arm

Giuseppe Ferrò, André C. Neto, Filippo Sartori, Luca Boncagni, Daniele Carnevale, Mateusz Gospodarczyk,
Andrea Monti, Alessio Moretti, Riccardo Vitelli, Llorenç Capellà, Ivan Herrero

Abstract—The very high availability of low-cost embedded
hardware development kits has enabled the fast prototyping
of real-time control architectures and algorithms. The software
development environments are usually very specific to the target
platform, so that is very challenging to develop code that is
portable between architectures (e.g. between an ARM and an
ATMEL processor).

The MARTe real-time software is a multi-platform C++ real-
time framework which allows the execution of control algorithms,
interfaces and services in different operating systems and plat-
forms. A new version of this framework has been developed with
a software architecture aiming at enabling the execution of the
same code across different bare-metal systems.

This paper presents a project where the new version of the
MARTe framework is used for the real-time control of a robotic
arm using low-cost embedded technologies. The controllers are
achieved by implementing a real time thread with maximum
priority that communicates with the motors power amplifier
setting the motor voltages and reading the angular position of
the joints by mean of optical encoders.

The control algorithm to drive the DC motors is based on
a new switching PID theory. Thus, given two different PIDs,
the control algorithm can switch from one PID to the other
in order to minimize overshoots and oscillations and increase
the convergence speed of the angular position to the desired
reference.

This work presents and compares the performance of the
control algorithm implementation on a bare-metal and on a
FreeRTOS deployment. Finally, it discusses the switching con-
troller design improvements.

I. INTRODUCTION

ANEW version of the MARTe C++ real-time control
framework (known as MARTe1) [1] has been developed

with a software architecture that aims at enabling the execution
of the same code across different bare-metal systems (i.e. a

Manuscript received May 29, 2016. The work leading to this publication
has been funded partially by Fusion for Energy under the Contracts F4E-
OFC-361-06 and F4E-OFC-620-01. This publication reflects the views only
of the author, and Fusion for Energy cannot be held responsible for any use
which may be made of the information contained therein.

G. Ferrò is with with CREATE Consortium Via Claudio, 21 80125 Napoli,
Italy and with Dipartimento di Ingegneria Civile e Ingeneria Informatica,
Università di Roma Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy

A. C. Neto, F. Sartori, R. Vitelli are with Fusion for Energy, Josep Pla 2 -
08019 Barcelona, Spain

L. Boncagni is with ENEA Unità Tecnica Fusione, C.R. Frascati, Via
E.Fermi 45, 00044-Frascati, Rome, Italy

D. Carnevale, M. Gospodarczyk, A. Monti, A. Moretti are with Diparti-
mento di Ingegneria Civile e Ingeneria Informatica, Università di Roma Tor
Vergata, Via del Politecnico 1, 00133 Rome, Italy

L. Capellà is with Vitrociset Belgium, Rue Devant les Hetres 2 B-6890
Transinne. Belgiumw

I. Herrero is with GTD Sistemas de Información, Paseo Garcı́a Faria 17
E-08005 Barcelona

processor without operating system). In particular, this new
version of the framework (named MARTe2) is being developed
under a fairly strict quality assurance system [2] aiming
at demonstrating compliance with the MISRA-C++:2008 [3]
standard.

At the core of any MARTe application are the Generic
Application Modules (GAMs). Each GAM is a runtime config-
urable software module with inputs and outputs, implementing
a given function. By assembling and connecting a set of
GAMs together, different systems can be deployed in distinct
hardware architectures without having to change the source-
code of these modules.

One of the limitations of MARTe1 was that it required an
operating system to execute. Taking advantage of the fact that
there was a new MARTe version being developed and of the
high availability of low-cost embedded hardware development
solutions, it was decided to impose on the MARTe2 design the
requirement of being able to execute a MARTe1 equivalent
application in a bare-metal system. Given that MARTe2 is
aiming at critical systems, it was also decided to support the
FreeRTOS [4] operating system (which also has a quality
certifiable version).

The STM32F4-Discovery board from
STMicroelectronics R©, a low price ecosystem with an ARM R©

Cortex-M4 R© 32-bit processor with a FPU core, 1 MB of flash
memory and 192 MB of RAM memory was selected as the
environment to prototype the controller implementation. The
system to be controlled is an anthropomorphic five degrees
robotic arm manipulator called Scortec-ER [5].

This paper details the full system implementation, starting
from the architecture design, followed by the high-level imple-
mentation details and concluded with the system performance
measurements.

II. ARCHITECTURE

As shown in Fig. 1 the system architecture is divided in four
macro blocks: an external PC, a STM32F4-Discovery board,
a power unit and the robotic arm. The control software is
embedded in the STM32F4-Discovery board, while the PC can
be used to monitor and control the embedded system . Each
of these components is detailed in the following paragraphs.

A. External PC

This component is only required when the reference signals
to the motors have to be provided to the embedded STM32F4-
Discovery board from an external source. For example, using



USB In USB Out

PC

References

Encoders

Diagnostics

Controls

STM32F4-Discovery

Controls Voltage

Power Unit

Voltage Encoders

Robotic Arm

Fig. 1. The system architecture is composed of four main components. The
external PC is optional and allows to monitor and configure the embedded
system.

the PC, the end-user is allowed to set in runtime the desired
angle position (in encoder steps) of each motor from an
user friendly interface. The PC also enables the access to all
the diagnostics data sent from the STM32F4 such as: cycle
time, amount of stack memory used, control signal values and
encoder position.

The PC software has been deployed employing the MARTe1
framework which already provides an HTTP based user
interface that can be customized for specific applications.
Moreover, the MARTe1 framework also provides a large
number of GAMs and tools for diagnostics. Examples are
the StatisticGAM (providing real-time statistic data of each
signal), the PlottingGAM (showing live real-time plotting of
signals) and the CollectionGAM (data storage and offline
retrieval of acquired data).

A MARTe1 hardware interface driver, known as Generic
Acquisition Module (GAcqM) in the MARTe1 vocabulary, had
to be developed in order to allow the communication between
the PC and the MARTe2 running in the STM32F4. The de-
veloped GAcqM, named USBDriver, allows to synchronously
receive in input any number of signals from the USB port.
Simultaneously, the USBDriver HTTP interface also provides
the possibility to asynchronously send the desired encoder
reference to any of the motors through the same USB port.
The PC block architecture with all the signals that are sent and
received during the communication with the embedded board
is shown in Fig. 2. The MARTe1 execution sequence is shown
in Fig. 3.

1

USB Out

1

USB In

Reference Motor 1

Reference Motor 2

Reference Motor 3

Reference Motor 4

Packet Number

STM Cycle Time

STM Absolute Time

STM Used Stack Memory

References

Encoders

Controls Reference Motor 5

Fig. 2. PC block architecture. Components deployed inside a MARTe1
instance enable the communication with the embedded system. In particular
the references to the motors can be asynchronously set using the MARTe1
HTTP user-interface.

Diagnostics 

Trigger
Diagnostics

TimeInputGAM

Diagnostics 

Diagnostics

Trigger 

References

USBDriver

Diagnostics

StatisticGAM

Diagnostics

PlottingGAM

Diagnostics

CollectionGAM

1

USB In

1

USB Out

Fig. 3. MARTe1 execution sequence. The USBDriver triggers the start of a
new cycle and transfers the data to the TimeInputGAM, which shares it with
all the real-time processing GAMs.

B. STM32F4-Discovery

As discussed before, the control board selected
for this project is the STM32F4-Discovery from
STMicroelectronics R©. This board provides many configurable
peripherals and internal hardware timers that must be adjusted
for any given project. The selected configuration includes the
following components:

• USB OTG FS with a micro A-B connector to communi-
cate with the PC. The baud rate was set to 115200 with
8 data bits and 1 stop bit (115200 8N1). The interrupt
for this peripheral was set with priority 6.

• UART2 using pins D5=Tx, D6=Rx. This port was used
as a debug serial stream to receive error messages from
the embedded board. The baud rate was set to 9600 with
8 data bits and 1 stop bit (9600 8N1).

• 16 digital GPIO pins to read the number of encoders of
the motors from the power unit.

• 5 PWM channels (one for each motor). Since each
STM32F4-Discovery timer can drive at most four PWM
channels it is necessary to use two timers in order to
provide the PWM signals to the five motors of the robot.

• Timer 2 to trigger an interrupt every 2.5 ms and post
an event semaphore. This can be used as a 400 Hz
synchronous control cycle mechanism. This interrupt was
set with priority 5 (the maximum value when using
FreeRTOS).

• Timer 5 to provide the high resolution timer. It triggers
an input every 100 ms and increments a counter variable.
Combining the value of this variable with the value of
the internal counter value it allows to timestamp with
a resolution of 1 µs. This interrupt also has maximum
priority.

• User-button connected to the pin A0. The pressing of the
button triggers an interrupt and allows the application to
react to the event. This interrupt has a priority equal to 7.

Regarding the MARTe2 software deployed in the STM32F4
processor, when the application starts, the board waits to
receive its configuration parameters from the USB port. This
method allows the user to run different MARTe2 applications
and to change the configuration, without needing to recompile
and reload the code running on the board.

A palette of MARTe2 GAMs have been developed specifi-
cally for this project. The ReferenceSignalGAM is the signal
generator and is used to provide the controller reference
signals. It can generate sine waveforms with configurable
frequency, offset, phase and amplitude or, alternatively, it



can interpolate a pre-configured array of time-value pairs.
The ScortecControlGAM implements the control system. It
takes the reference signals and the encoder values in input
and executes the desired control procedure. Given that the
deployed applications implement PID-like controllers, all the
controller parameters, such as the proportional, integral and
derivative gains (Kp, Ki, Kd), saturations and dead zones can
be set by configuration.

In order to be able to test the system without having the
actual robot connected, a ModelGAM simulates a group of
SISO or MIMO plants. It is a container of customizable Plant
classes which can be implemented accordingly to the system
that is to be simulated. In order to simulate the dynamics of
the DC motor, we have implemented a SISO LTI plant, where
by configuration it is possible to define the linear matrices A,
the vectors B and C and the scalar D.

Concerning the hardware interface, a ScortecEncoderMod-
ule reads the encoder values of the motors from the power
unit, a ScortecPWMModule the manages the PWM signals that
are used to drive the motors, a StmUSBModule handles the
interface with the USB port and a StmTimeGeneratorModule
generates the absolute time in seconds from the beginning of
the application.

The communication protocol with the power unit requires
two ports of 8 digital pins, one used as a command line and
the other as a data line. For each motor it is necessary to
send a read request, sleep for 100 µs and only then read the
encoder value. This procedure, which has to be repeated for
each motor, is the major limiting factor on the cycle time of
the system. The ScortecPWMModule allows to configure the
PWM timers, frequency, duty-cycle resolution and the pins
layout. It computes the duty cycle related to each control
signal in input (provided by the ScortecControlGAM) and
sets it to the PWM peripheral. The StmUSBModule manages
the interface with the USB port. It can be configured to be
a receiver or a sender in blocking or non-blocking mode.
In the deployed applications we have defined two of these
modules, one is a sender which writes the diagnostics data
at the beginning of each cycle, and another as a receiver in
non-blocking mode which allows to read asynchronously the
reference signals from the outside. The program functional
behavior is shown in Fig. 4.

1

Diagnostics

1

References

2

Encoders

2

Controls

PID(s)

PID Controller Saturation

Cycle Time

Absolute Time

Used Stack

K

PWM Remap

Zero

PWM Zero Value

Execution Time

Fig. 4. STM32F4-Discovery block functional behavior. The controller is
driven by a reference set by the user and a measurement given by the encoders.
The outputs are the internal variables values (for debug) and the control
voltage.

As depicted in Fig. 5 and Fig. 6, two applications, using
the modules described above, have been developed. Both
applications work in bare-metal mode and with the FreeRTOS
operating system. The first application (Application-1) is to be
used with the Scortec robot physically connected to the board.
In this case the only GAM required is the ScortecControlGAM
which computes the control signals from the StmUSBModule
(the references) and from the ScortecEncoderModule(the en-
coders) and writes directly the output (control signal) on the
ScortecPWMModule. The ScortecControlGAM also needs to
know the cycle time value, in order to be able to compute
derivatives and integrals of the signals. Given that, for per-
formance statistics, the MARTe2 GAM scheduler generates
and sets, for each GAM, the time elapsed from the begin to
the end of the GAM execution (known as RelativeUsecTime)
and the time elapsed from the begin of the last cycle to the
end of the GAM execution (named as AbsoluteUsecTime), the
ScortecControlGAM can use its AbsoluteUsecTime to compute
the sample time.

References

Encoders

Clock

Controls

Diagnostics

ScortecControlGAM

1

StmUSBModule

2

ScortecEncoderModule

3

StmTimeGenerator

2

StmUSBModule

1

ScortecPWMModule

Fig. 5. Execution sequence of the MARTe2 application that is physically
connected to the robot (Application-1).

The second application (Application-2) has the purpose of
performing a stand-alone simulation of a closed-loop control
system. The reference signals are generated from the Ref-
erenceSignalGAM and the encoders are the output of the
ModelGAM which can be used to simulate the behavior
of generic plants. These three GAMs connected together as
shown in Fig. 6 can simulate any type of closed-loop system.

References

Encoders

Controls

Diagnostics

ScortecControlGAM

1

StmTimeGeneratorModule

2

StmUSBModule

1

ScortecPWMModule

Time References

ReferenceSignalGAM

Controls Encoders

ModelGAM

Fig. 6. Execution sequence of the MARTe2 application that is used to
simulate the connection to the robot (Application-2).

C. Power Unit

The input port of the power unit is a 37-pin D female
connector (ITT/Cannon DC-37S) with 6 analog input pins
connected the motor power supply drivers and three blocks of
8 digital pins. Thus two ports of 8 digital pins are connected
to the STM32F4-Discovery pins and they are used to read
the encoder values. The power unit needs, for each motor,
an analog signal between +5 and -5 Volts to drive the power



supply. As a consequence, a stage between the board and the
power unit to convert the PWM signal to an analog input
is needed. In order to achieve this goal a second order low
pass filter has been implemented and the poles of its transfer
function have been set to p1 = p2 = 666.67. Since the PWM
signal value can vary from 0 V to 3.3 V it is also necessary
to amplify the signal by a factor k = 3 and then to add a
constant -5V value to obtain an output in the [-5 V, +5 V]
range. Fig. 7 depicts the power unit block scheme, Fig. 8 shows
the electronic circuit scheme of the filter and Fig. 9 depicts
the output amplitude in the frequency domain. Fig. 10 shows
the output in the time domain in three cases: 100%, 50% and
0% duty cycle with a 1 kHz PWM frequency. From Fig. 9 it
can be seen that in order to achieve a substantial attenuation
of the PWM signals undesired frequencies , it is advisable to
use a PWM frequency of at least 1 kHz. The frequency of
the PWM signals can be configured in the configuration file,
but in our applications we have always set it to 10 kHz. It
is important to note that with this output stage a 50% PWM
duty cycle is required to achieve a 0 V signal in the output. As
a consequence the STM32F4 board must set the PWM duty
cycles to 50% before initializing the power unit (otherwise
with the PWMs off, -5 V will be provided as input voltage to
the motors). The outputs of these stages (one for each motor)
are connected to the analog pins of the power unit connector
completing the interconnection with the STM32F4-Discovery
board.

1

Voltage

1

Controls

3

Amplifier

In Out

PU

1-D T(u)

Low Pass Filter

5

Offset

Fig. 7. Power unit interface to the control output. A low-pass filter translate
the PWM voltage to the required analog range.

Fig. 8. Low pass filter scheme (with amplification and offset) for the
translation between the PWM and the power supply analog input.

Fig. 9. Frequency response of the filtering stage electronic circuit.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time s

O
u

tp
u

t 
V

 

 
50% duty cycle

0% duty cycle

100% duty cycle

Fig. 10. Output of the filter with 50% (blue), 0% (green), 100% (red) PWM
duty cycles at 1 kHz frequency

D. Robotic Arm

The robotic arm is fully driven by its power unit, with the
encoder values read from a PIC microprocessor, while the
control signals must be delivered to the power unit internal
power supply driver. Each motor can move a single joint, one
on the base, one on the shoulder, one on the elbow and the
last two manage the wrist movements, commonly called pitch
and roll (see Fig. 11).

The model of an anthropomorphic five-degrees manipulator,
like the Scortec, is a MIMO non-linear plant (products of
sine and cosine functions of the angular positions appear
in the model equations of motion). Given that the analysis
of the model and the project of a ad-hoc controller for the
entire system are out of the scope of this paper, we have
considered each motor as if it was decoupled from the others,
implementing a separate controller for each one of them.

III. SYSTEM PERFORMANCE

One of the main goals of this paper was the comparison
between the performance measured using a bare-metal GAM
scheduler and the performance achieved using the standard
GAM scheduler executed in the FreeRTOS operating system. It
should be noted that using an operating system like FreeRTOS
offers significant advantages, such as the possibility to have
multi-threading in the application.



The applications have been tested in both cases with a
synchronizing cycle time of 2.5 ms. In bare-metal the system
waits for the start of the next cycle on a spin-lock semaphore
while in FreeRTOS it waits in an event semaphore. The
measured cycle times are shown in Fig. 12 and Fig. 13, while
Fig. 14 and Fig. 15 show the total execution time, namely the
amount of time in which the ScortecControlGAM is execut-
ing. The following results have been obtained from the two
simulations in Bare-Metal and FreeRTOS modes respectively,
where CT denotes the cycle time, ET the execution time, ρ
the mean and σ the standard deviation:

• Bare-Metal: ρ(CT ) = 2.472 ms; σ(CT ) = 28 µs; ρ(ET )
= 1.789 ms; σ(ET ) = 19 µs

• FreeRTOS: ρ(CT ) = 2.473 ms; σ(CT ) = 28 µs; ρ(ET )
= 1.788 ms; σ(ET ) = 19 µs

As discussed above, one of the advantages of FreeRTOS
over bare-metal applications is the possibility of running
several threads in parallel. In a real-time application this can
be used to asynchronously monitor the application without
interfering with the real-time application. In order to demon-
strate this feature, we have implemented on Application-1 a
second thread which executes concurrently (but with lower-
priority) to the GAM scheduler thread. Using this thread and
the MARTe1 HTTP server, the user can query the properties of
any the objects deployed in the MARTe2 embedded instance.
Namely, this thread implements a connection to the UART
port and upon request introspects and prints, also in the UART
port, the properties of the object. Fig. 16 and Fig. 17 show
the performance of this two-threading application when con-
tinuously sending asynchronous print requests. The measured
results in this case are ρ(CT ) = 2.484 ms, σ(CT ) = 29 µs,
ρ(ET ) = 1.785 ms, σ(ET ) = 19 µs, , where it can be seen that
the system cycle-time is not affected by a second monitoring
thread, thus demonstrating the robustness of the design and
of FreeRTOS. Moreover, these performance figures are also
similar to the ones obtained with MARTe1 [6], [7].

IV. SYSTEM SIMULATION

One of the main features of MARTe, which is also retained
in MARTe2, is the possibility to build applications by assem-

Base

Shoulder

Elbow

Wrist
Pitch

Roll

θ2

θ3

θ1

θ4

θ5

Fig. 11. The Scortec robot is an anthropomorphic five degrees manipulator.
Each of its degrees of freedom is controlled by an independent motor.

2350 2400 2450 2500 2550 2600
0

2000

4000

6000

8000

10000

12000

14000

16000

Time µs

S
a

m
p

le
s

 

 
Bare Metal Cycle Time

Fig. 12. Bare-metal application cycle time computed over 40000 samples

2385 2405 2425 2445 2465 2485 2505 2525 2545 2565
0

2000

4000

6000

8000

10000

12000

14000

16000

Time µs
S

a
m

p
le

s

 

 
FreeRTOS Cycle Time

Fig. 13. FreeRTOS application cycle time computed over 40000 samples.
The outliers are possibly driven by the USB communication but do not greatly
affect the cycle time, i.e. the application is capable of restarting a new control
cycle with-in an acceptable jitter.

bling different functional blocks, without the need to change
or recompile the user-code. This feature was used as the basis
for the design of the second application (Application-2), where
an hardware-in-the-loop approach was used to simulate and
test the behavior of the embedded program without physically
connecting it to the board of the device to be controlled.

In order to test the correctness of the ScortecControlGAM
which currently provides a controller for each motor, we have
identified the transfer function of one of the Scortec DC motors
and we have simulated the entire closed loop system inside
the embedded STM32F4 board. The first step was to define a
standard position for the robot in which all the encoder values
had to be reset to zero. This position is commonly called
the robot home position. A common practice is to define the
home position as the position in which all the motors stand at
their limit switch. Unfortunately the Scortec robot does not
provide hardware switch sensors, so that it was necessary
to implement a software procedure to check if each motor
has reached its limit switch. The adopted solution consists in
assuming that the motor has reached its limit switch if the
control output is different from zero (or, more realistically,
inside a configurable dead zone) and the encoder value is kept
constant for more than a configurable number of application
cycles. The MARTe2 application is divided in two different
states: the first (State-1) is only devoted to bring the robot
back into the home position, the second state (State-2) allows
to control the robot by imposing the desired encoder positions
for each motor.



1760 1780 1800 1820 1840 1860 1880
0

2000

4000

6000

8000

10000

12000

14000

Time µs

S
a

m
p

le
s

 

 
Bare Metal Execution Time

Fig. 14. Bare-Metal application execution time computed over 40000
samples.

1760 1780 1800 1820 1840 1860 1880
0

5000

10000

15000

Time µs

S
a
m

p
le

s

 

 
FreeRTOS Execution Time

Fig. 15. FreeRTOS application execution time computed over 40000 samples.
As in the bare-metal case the outliers are driven by a jitter in the USB
interface.

During State-2 the ScortecControlGAM assumes that:

ri = yi + kr

where r is the reference motor position, y the encoder value
and kr a configurable constant value for i = 1 . . . nmotors.
In this way, using the implemented controllers, the motors
will keep moving in the same direction until they will reach
their limit switch, where the control and encoder values will
be set to zero. Once the robot has reached its home position
the user, pressing the user button of the STM32F4-Discovery
board, triggers a state change inside MARTe2 and changes the
application to the normal operation State-2.

The model of the controller shown in Fig. 18 was
implemented using the ModelGAM and executed within
Application-2. The parameters were identified by providing
input voltages with different frequencies to the power unit and
reading the encoder values in return. Defining:

• La, Ra the motor armature inductance and resistance.
• J the momentum of inertia.
• B the viscous friction.
• τd the disturbance torque.
• Ke the motor speed constant.
• Ka the motor torque constant.
• Km the motor mechanical constant.

the transfer function between the input voltage v (measured in
mV ) and the angular speed ω (the derivative of the encoder

2350 2400 2450 2500 2550 2600
0

0.5

1

1.5

2
x 10

4

Time µs

S
a
m

p
le

s

 

 
FreeRTOS Cycle Time

Fig. 16. FreeRTOS two-threading application cycle time computed over
40000 samples, where it can be seen that the system cycle-time is not affected
by a second monitoring thread.

1760 1780 1800 1820 1840 1860 1880
0

0.5

1

1.5

2
x 10

4

Time µs

S
a
m

p
le

s

 

 
FreeRTOS Execution Time

Fig. 17. FreeRTOS two-threading application execution time computed over
40000 samples.

position) is:

Pvω(s) =
F (s)

1 +KeF (s)
− τdKm

(Js+B)(1 +KeF (s))

with:
F (s) =

KmKa

(Las+Ra)(Js+B)

For the identification we have ignored the filtering stage and
the motor electrical dynamics, because their time-constants are
much faster than the mechanical dynamics of the motor:

F (s) =
KmKa

Js+B

Moreover assuming the disturbance torque τd = 0 and defining
KT = KmKa we obtain:

Pvω(s) =
KT

Js+B +KeKT

and accordingly, adding the integrator, we obtain the second-
order transfer function from input voltage to the angular
encoder position:

Pvθ(s) =
KT

s(Js+B +KeKT )

The identified parameters for the motor are: KT

J = 0.96,
B+KeKT

J = 6.05. Note that since the plant transfer function
already has a pole in the origin, we achieve zero steady-state
tracking error for constant references by just employing a
simple proportional gain as controller. As described previously,
the control signal, namely the input voltage to the motor,
has been saturated between [-5 V, +5 V]. As consequence,
also imposing an higher value of the proportional value Kp,



-

+
+

-Ka
sLa+Ra

Km
sJ+B

Ke

1
s

v

τd

τ ω θ

Electrical

Dynamic

Mechanical

Dynamic

Fig. 18. The DC motor model implemented in the ModelGAM

.

the saturation attenuates the control strength. Nevertheless, a
high value of Kp could still lead to undesired overshoots,
thus we have implemented a switching PID controller which
can change the value of its gains depending on the value of
the tracking error. In this case, attenuating the proportional
gain when the module of the error is sufficiently small, we
can achieve a good convergence speed to the reference signal
decreasing or avoiding the overshoot.

Fig. 19 and Fig. 20 show the results of the hardware-in-
the-loop (i.e. executed in the STM32F4) simulations in which
we have used a simple proportional controller with Kp = 25
and after a switching proportional controller beginning with
Kp = 25 but switching to Kp = 8 when the module of the
error became less than 200. Fig. 19 compares the outputs of
the closed-loop system and we can note that the overshoot
employing the classic proportional controller does not affect
the output response if we employ the switching proportional
instead. Fig. 20 shows the control signal for both controllers
and we can observe the discontinuity appearing in the input
voltage provided by the switching controller in the switching
time instant.

This approach can be considered as a simplified version
of the controller described in [8] and, with a minimum of
effort required in adjusting the controller coefficients and
gains, it can assure very good performance results. The system
behavior during State-1, using the switching proportional
controller, is shown in Fig. 21, where the value of kr has
been set to 100 and the limit switch to 3000 encoders. Note
that, since the error value in this phase is constant and equal
to e = kr = 100, which is less than the imposed switching
threshold (σ(e) = 200), the gain remains Kp = 8, thus,
before the motor reaches its limit switch, the control action
is always equal to Kp · e = 800. Once it is detected that the
input voltage is different than zero but the encoder read value
remains constant along a configurable number of cycles (in
this case set to 500 ' 1.25 s), it is assumed that the motor
has reached the limit switch (the joint movement is blocked)
and the input voltage is set to zero.

V. CONCLUSIONS

In this paper we have presented an embedded implemen-
tation of a control project using the MARTe2 framework. In
particular, the framework performance was measured in two
use-cases that are of potential interest for the development
of embedded (i.e. systems with limited amount of memory,
number of cores and clock speed) real-time applications: bare-
metal and FreeRTOS. Given that MARTe2 is being developed

32 34 36 38 40 42 44 46 48 50

0

100

200

300

400

500

600

700

800

900

1000

t

θ

 

 
P

Switching P

Reference

Fig. 19. Closed-loop system output with fixed proportional controller (blue),
and with switching proportional controller (green).

32 34 36 38 40 42 44 46 48 50

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

t
m

V
 

 
P

Switching P

Reference

Fig. 20. Input voltages to the motors with fixed proportional controller (blue),
and with switching proportional controller (green).

under a fairly strict quality assurance process this gives the
potentiality to deploy critical systems without incurring in
large effort penalties (most of the effort was already put into
the framework development itself). It was also shown that
FreeRTOS is also a viable solution with performance figures
similar to bare-metal. Given that this project was developed
in parallel with the development of the MARTe2 framework,
it was also of significant importance to make sure that the
framework design did not prevent the development of this type
of applications.

Taking advantage of the developed application, and consid-
ering the model of a Scortec DC motor, we have deployed
a switching proportional controller showing the advantages
in terms of performance during the transient of the system

5 10 15 20 25 30 35 40 45

0

500

1000

1500

2000

2500

3000

t

θ

 

 
Encoders

Input Voltage (mV)

Fig. 21. State-1 Home position Scortec routine for one of the joints. In blue
the number of encoders, in green the input voltage. The joint home position
(limit switch) has been set to 3000 encoders.



response (overshoot and convergence speed) with respect to
fixed-gain proportional controller. In the future, the MARTe2
block implementing the switching controller can be configured
for instance to adapt the PID gains depending on the torque
load acting on the robotic arm joints, when considering the
entire robot model.

It should be noted that this same infrastructure can be
used to develop other real-time applications in any similar
ecosystem.

REFERENCES

[1] A. C. Neto, D. Alves, L. Boncagni, P. J. Carvalho, D. F. Valcarcel,
A. Barbalace, G. De Tommasi, H. Fernandes, F. Sartori, E. Vitale,
R. Vitelli, and L. Zabeo, “A survey of recent marte based systems,” IEEE
Transactions on Nuclear Science, vol. 58, no. 4, pp. 1482–1489, 2011.

[2] A. C. Neto, F. Sartori, R. Vitelli, L. Capellà, G. Ferrò, and I. H.
and Héctor Novella, “An agile quality assurance framework for the
development of fusion real-time applications,” in Proc. 20th IEEE-NPSS
Real Time Conf. (RT), 2016.

[3] MISRA C++:2008 Guidelines for the Use of the C++ Language in
Critical Systems, 2008, ISBN 978-906400-03-3 (paperback), ISBN 978-
906400-04-0 (PDF).

[4] FreeRTOS, “The freertos project,” 2016, [Online; accessed 27-may-2016].
[Online]. Available: http://www.freertos.org/index.html

[5] A. Gasparri, S. Panzieri, F. Pascucci, and G. Ulivi, “Pose recovery for a
mobile manipulator using a particle filter,” in 2006 14th Mediterranean
Conference on Control and Automation, June 2006, pp. 1–6.

[6] A. C. Neto, D. Alves, L. Boncagni, P. J. Carvalho, D. F. Valcarcel,
A. Barbalace, G. De Tommasi, H. Fernandes, F. Sartori, E. Vitale,
R. Vitelli, and L. Zabeo, “A survey of recent marte based systems,” in
Proc. 17th IEEE-NPSS Real Time Conf. (RT), 2010, pp. 1–8.

[7] D. Alves, A. C. Neto, D. F. Valcárcel, R. Felton, J. M. López, A. Bar-
balace, L. Boncagni, P. Card, G. D. Tommasi, A. Goodyear, S. Jachmich,
P. J. Lomas, F. Maviglia, P. McCullen, A. Murari, M. Rainford, C. Reux,
F. Rimini, F. Sartori, A. V. Stephen, J. Vega, R. Vitelli, L. Zabeo,
and K. D. Zastrow, “A new generation of real-time systems in the jet
tokamak,” in Real Time Conference (RT), 2012 18th IEEE-NPSS, June
2012, pp. 1–9.

[8] L. Boncagni, D. Carnevale, G. Ferro, S. Galeani, M. Gospodarczyk, and
M. Sassano, “Performance-based controller switching: An application to
plasma current control at ftu,” in 2015 54th IEEE Conference on Decision
and Control (CDC), Dec 2015, pp. 2319–2324.


