
An Agile Quality Assurance Framework for the
Development of Fusion Real-time Applications

André C. Neto, Filippo Sartori, Riccardo Vitelli, Llorenç Capellà, Giuseppe Ferrò, Ivan Herrero
and Héctor Novella

Abstract—In the context of a fast controller prototype project,
which aimed at testing the integration of fast plant systems in the
ITER software environment, a software Quality Assurance (QA)
strategy that is appropriate for the development of ITER real-
time applications (e.g. diagnostic control systems) is being devel-
oped. In particular the QA processes had to be designed in order
to safely integrate contributions from a large and heterogeneous
development community, which includes developer profiles both
from the scientific community and from the industrial suppliers.
Notably the coding standard aims at demonstrating MISRA-
C++:2008 compliance.

The MARTe software framework is currently being used to
implement a large variety of fusion real-time control system
applications. Being a modular and multi-platform framework
has allowed to reuse components, interfaces and services across
systems which are deployed in very distinct architectures. This
has leveraged the exposure of the same code to different environ-
ment configurations, thus increasing the confidence on its quality
and robustness.

The QA processes are being applied to the development of a
new version of the MARTe framework. The main objective is to
provide a QA certifiable environment from where it is possible to
develop, with less effort, certifiable applications. This is expected
to be achieved by sharing the same QA methodologies and tools
and by maximising the reuse of framework modules (which were
also developed against these QA processes).

This paper details the QA processes, the associated tools and
discusses its applicability to the fusion development environment.

Index Terms—Software quality assurance, real-time, control
software, MARTe.

I. INTRODUCTION

SOFTWARE frameworks are usually associated with the
need to satisfy common and transversal requirements in

a given development context. When a project chooses to take
advantage of an existing software framework, the development
team expectation is to be able to save effort in the full
development cycle domain, i.e. from design to integration.
As a consequence, a software framework is expected to be
robust and to behave coherently with its specifications. This

Manuscript received May 29, 2016. The work leading to this publication
has been funded partially by Fusion for Energy under the Contract F4E-OFC-
361-06. This publication reflects the views only of the author, and Fusion for
Energy cannot be held responsible for any use which may be made of the
information contained therein.

A. C. Neto, F. Sartori and R. Vitelli are with Fusion for Energy, Josep Pla
2 08019 Barcelona, Spain (e-mail: Andre.Neto@f4e.europa.eu).

L . Capellà is with Vitrociset Belgium, Rue Devant les Hetres 2, Belgium
G . Ferrò is with Dipartimento di Ingegneria Civile e Ingeneria Informatica.

Universit di Roma Tor Vergata, Via del Politecnico 1. 00133 Rome, Italy
I. Herrero and H. Novella are with GTD Sistemas de Información, 08005

Barcelona, Spain.

requires the existence of appropriate and complete documen-
tation, complemented by thorough testing which exercises the
framework in all of the anticipated use-cases. Moreover, it
is also crucial to have a mechanism which guarantees that
any defects found in the framework can be properly signalled
and managed by the framework developers. All of the above
can only be appropriately handled by guaranteeing that the
framework has a sound quality assurance process associated
to it.

The MARTe software framework [1] is C++ modular and
multi-platform framework for the development of real-time
control system applications. As of today, it has been deployed
in many fusion real-time control systems [2], particularly
in the JET tokamak [3]. One of the main advantages of
the MARTe architecture is the bold separation between the
platform specific implementation, the environment details and
the real-time algorithms (i.e. the user code). The platform is
defined by the target processor and the operating system, while
the environment encapsulates all the interfacing details which
are related to the peculiarities of the location where the final
system is to be deployed. This includes both the interfacing
with the hardware plaform and the binding to the services that
allow to configure and retrieve data from the system. This clear
separation of concern has allowed to reuse many components
inside the same environment (e.g. all the systems deployed at
JET share the same services for parameter configuration and
data retrieval) and to develop and test the user algorithms in
non-real-time operating systems and to later deploy the same
exact code in a previously tested platform.

As more systems started to use MARTe, the number
of supported environments and platforms has considerably
grown. This has leveraged the exposure of the same core code
to different environment configurations, thus increasing the
confidence on its quality and robustness. Having the same
infrastructure being used inside a community has also had
the advantage of sharing and recycling knowledge about the
framework and its architecture. In the context of an internal
ITER fast controller [4] prototype project, which aimed at
testing the integration of fast plant systems in the ITER
software environment, a new version of the MARTe framework
has been developed. One of the main objectives of this activity
was to develop a software Quality Assurance (QA) strategy
that is appropriate for the development of ITER real-time
applications (e.g. diagnostic control systems). In particular the
QA process had to be designed in order to safely integrate
contributions from a large and heterogeneous development
community, which includes developer profiles both from the
scientific community and from the industrial suppliers.



II. PROJECT ORGANISATION

As discussed before, one of the main objectives of this
exercise was to enable a development which would enable
external contributions from a very heterogeneous community,
without compromising the overall quality of the project. As
it can be seen in Fig. 1 the selected model comprises three
main actors. The brainstorming group discusses and proposes
requirements for MARTe. The coordinator decides which
requirements are feasible and relevant for the framework and
integrates them into the developing documentation. Finally,
the developing team designs and implements the software
accordingly to these requirements. It should be noted that
it is possible to share members between the brainstorming
community in the development team, provided they strictly
abide to the QA processes.

Brainstorming
group

 (user space)

Coordinator
(product owner)

Development
team

Fig. 1. Top level project organization. The brainstorming group proposes
requirements which are filtered by the coordinator and later delegated to the
development team.

A. Deliverables

The main project deliverables are listed in table I. In
particular, with each release of the framework, a new version
of each of these deliverables is to be issued. The requirements
deliverable describes the features that the framework must
meet and its constraints. The architecture and design deliver-
able details the system architecture and its design. It contains
a model of the main blocks of the framework, the expected
interactions between components and the links between the
requirements and the components. The software deliverable
comprises the source code and API documentation, as well
the unit tests and integration tests source code. The QA audit
deliverable contains all the quality reviews made for the other
deliverables and all the detected non-conformities. Finally, the
traceability matrix shows the links between the requirements
and the design classes.

B. Software activities

As shown in Fig. 2, the software activities are structured
following a double-V-model approach where the first V (blue)

Deliverable Name scheme Type
Requirements MARTe requirements (vX.Y) Report
Architecture & design MARTe architecture & design (vX.Y) Report
Software

Source code MARTe source code (vX.Y) Source
API documentation MARTe API documentation (vX.Y) Report
Unit tests MARTe unit tests (vX.Y) Source
Integration tests MARTe integration tests (vX.Y) Source

QA audit MARTe QA-audit (vX.Y) Report
Traceability matrix MARTe traceability matrix (vX.Y) Report

TABLE I
MARTE DELIVERABLES FOR EACH RELEASE, WHERE X DENOTES A

MAJOR VERSION AND Y A MINOR VERSION.

is related to the development activities of the framework
source-code and the second (red) implements the MARTe
quality assurance. The double-V emphasises the fact that each
of the activities has its traceable mirror.

The requirements activity translates the needs and objectives
for MARTe, as defined by the stakeholders, into a proper set of
requirements. The output is a model of requirements expressed
in UML, which are grouped into fields of interest using UML
packages. The review process verifies that all requirements
have been correctly written, following a given set of rules,
and defined in the requirements document.

The architecture & design activity is driven from the
requirements defined in the previous activity. The design
includes a subset of classes considered the architectural foun-
dation of the framework, complemented by any other classes
which are needed for the framework to work. The review
process verifies that the architecture and design are aligned
with requirements and follow best practices. The responsible
has to pay special attention to possible redundant modules and
into the global coherence of system.

The code and documentation review process includes the
manual verification of the API documentation and the verifi-
cation that a set of best practices were followed during the
code implementation. This activity is complemented by the
manual verification of the API documentation generated from
the comments in the source-code and by the execution of an
automated tool which verifies the compliance of the source-
code against the coding standard.

The software activities are concluded with the development
of unit and integration tests. The unit test classes will im-
plicitly trace the implementation classes of the source code,
because it is assumed that each unit test class tests only one
implementation class. The integration tests aim at exercising
the architecture classes in the widest set of representative
use-cases. The review of the unit tests is divided in a static
and in a dynamic analysis phase. In the former, the reviewer
verifies how many public functions of the source code have
unit tests defined (black box unit testing is assumed). The
latter, calculates what percentage of code has been executed
(white/grey box unit testing is assumed). In both cases, code
with a low coverage percentage (< 80%) will be rejected.

III. QUALITY ASSURANCE

As depicted in Fig. 3, the QA system is described in
five different documents (which combined provide an integral



Requirements 
engineering

Concept validation

Requirements 
review

Architecture and 
design

Architecture and 
design review

Code and 
documentation

Code and 
documentation 

review
Unit tests

Integration tests

Acceptance tests 
(deployment)

Acceptance tests 
review

Integration tests 
review

Unit tests review 
(coverage and 

functional)

Operational readiness
D

ev
el

op
er

 s
pa

ce
U

se
r 

sp
ac

e

Release control

Fig. 2. The blue V is in charge of developing the MARTe framework. The red V guarantees the framework quality assurance. It should be noted that this
double-V-model does not prescribe any given software lifecycle methodology.

processes). The Project Management Plan (PMP) details the
software development process described above.

Project Management Plan (PMP)

Quality Assurance Plan (QAP)

Configuration Management Plan (CMP)

Verification and Validation Plan (VPP)

Coding Standard (CS)

Fig. 3. Relationship between the QA plans. Quality, configuration manage-
ment and verification are integral processes.

The Quality Assurance Plan (QAP), establishes the process
and procedures that are used to achieve the objectives of the
quality assurance process. In particular, it defines the role
of the Quality Officer (QO) and its main responsibilities,
which include independent reviews and audits of all the data
and processes involved in the development, production, and
maintenance of the deliverables. The QO also verifies the
degree of compliance against the project applicable standards,
project plans and processes. This plan also imposes the tem-
plate format of the audit documentation (inputs, outputs and
checklists) and sets up a procedure for process improvement.

The Configuration Management Plan (CMP) identifies the
items which will be under configuration management and
establishes the strategy for baseline and change control. The
CMP defines that Git [5] is used as the version control sys-
tem for the software development and imposes the workflow
(described in section V).

The Verification and Validation Plan (VVP) details the
verification processes applied by the project to satisfy the
software verification process objectives, including software

testing, reviews and traceability. Specifically, it imposes that
the verification team shall not have taken part in the devel-
opment process, in order to ensure the independence between
development and verification activities. Nevertheless, the VVP
allows for the exchanging of roles during the life-cycle of the
project (i.e. a developer may be a reviewer of another devel-
opment activity, on which this developer was not involved).
The VVP also defines the transition criteria between software
activities (see Fig. 4) and the auditing templates in a format
compatible with the issue tracking tool (detailed in section V).

Acceptancextestsx
review

Requirementsx
review

Architecturexandx
designxreview

Unitxtestsxreviewx
(coveragexandx

functional)

Integrationxtestsx
review

Codexandx
documentationx

review

Non-compliancesxfound

Reportxerror

Errorxfixedx(restartxV&V)

Fig. 4. All the possible states and transitions of the verification and validation
phases.

The Coding Standard document defines the main rules appli-
cable to the source code development. The main goal of these



rules is to assure the coherence among the code developed by
the different team members and to also assure its quality and
maintainability. In order to increase the robustness of the code
and to avoid common errors and pitfalls, a controlled subset of
the C++ language was defined for the MARTe framework. This
subset is defined by means of a list of coding rules, which will
address many of the dangerous aspects of the C++ language for
critical systems. Thus, the C++ version used on MARTe will
be that defined by the standard ISO/IEC 14882:2003 [6] (also
known as C++03), while the coding rules will be those defined
by the standard MISRA C++:2008 [7]. The MISRA C++:2008
is a set of software development guidelines for the C++ lan-
guage targeted towards critical systems, which applies to the
C++ language defined by the standard ISO/IEC 14882:2003.
MISRA C++:2008 has emerged from the automotive industry,
and is widely accepted as a model for best practices in sectors
like aerospace, telecom, medical devices, defense, railway and
others. MISRA C++:2008 also takes into account all those
features of the language that are unspecified and undefined in
the ISO/IEC 14882:2003.

All the coding rules must be followed by developers at
coding time, but formal reviews are also performed in order to
ensure that all written code conforms to them. This is mostly
performed by means of a static code checking tool (described
later) which automatically detects violations to the rules in
the code. For those rules which are not automatable, a manual
review is performed before any major release. The output of
this process is traced in a compliance matrix which will list
all the rules and duly justifies any deviations. The coding
standard also defines and imposes rules and guidelines for
documentation, naming and code formatting.

IV. SOFTWARE LIFECYCLE IMPLEMENTATION

In order to implement the software activities described in
section II-B, the software lifecycle is managed using a mixture
between a waterfall and an Agile [8] approach. Each user-story
aims at developing the components required to satisfy at least
one of the framework requirements. These user-stories live
in the product backlog and at the beginning of every sprint,
a subset is selected to be implemented in the scope of the
sprint. During the sprint planning meeting the user-stories for
the sprint are set in order of priority. During the sprint imple-
mentation, the development team moves the user-stories into
the quality process depicted in Fig. 2. Each of the steps shown
in Fig. 4 has to be reviewed by the quality responsible before
the user-story is allowed to move forward in the V-model.
This means that while a user-story is being reviewed (e.g. code
review) the developer is allowed to start (or continue) working
in another story (e.g. the test implementation of a story which
had its code reviewed already). Once a user-story successfully
passes the integration test review, all of its components are set
to be released with the next version of the framework.

Following the spirit of an Agile development, the devel-
opment team aims at meeting and reporting daily on the
development status. Each sprint is concluded with a sprint
review where the team demonstrates a potentially shippable
product increment (i.e. that at least one of the user-stories has
successfully passed the integration test review).

The process optimisation discussed before is implemented
during the sprint review meeting, where the team members
are asked to openly identify issues, which are then classified
into one of the following three types: (i) things that the team
should start doing; (ii) things that the team should stop doing;
and (iii) things that the team should continue doing. Approved
process improvements are then implemented by updating the
appropriate standards, procedures, processes, checklists, or
other related documentation (which are controlled configura-
tion items). Software defects and other non-compliances are
also translated into user-stories which follow this same QA
process.

V. DEVELOPMENT TOOLS

The processes described above are supported by a set of
tools which aim at assisting the developer at consistently
meeting the coding standard rules, the quality reviewer at
maximising the number of automatic verifications and the
project manager at having a sound overview of the project
status.

Source cove versioning is performed using Git and Git-
Lab[9]. The Git workflow, which based in the Git branching
model presented in [10], is described in Fig. 5 where it shows
that each user-story is always created from the development
branch. This branch is only merged back into development if
it successfully passes all the quality checks. At the end of the
sprint the development branch, which includes all the finalised
user-stories, is merged into the release branch. All the quality
auditing is performed over this branch and minor bug fixing is
allowed. Finally, the release branch is merged into the master
branch and a new tag with the version number created. It
should be noted that after being merged into develop branch,
the user-story feature is deleted. An hotfix branch is used to
resolve critical bugs in the master version. When resolved,
the branch will be merged back into the master and develop
branches (if applicable it will also be merged to the release
branch).

The Redmine [11] issue tracking system is used to manage
the Agile workflow and to store all the quality reports, includ-
ing the audits and the Agile sprint planning and review meeting
minutes. More specifically, each user-story is assigned to a
redmine issue and its life-cycle managed using the Redmine
Agile plugin [12] (see example in Fig. 6). The plug-in was
configured in order to provide a one-to-one mapping with the
V-model, greatly simplifying the management and overview
of the QA review process.

Unit testing is performed using the google-test frame-
work [13]. Nevertheless, and given that MARTe is also ex-
pected to be deployed in bare-metal systems (i.e. processors
without an operating system), the google-test framework is
only used as a front-end engine to execute the MARTe unit
test class methods, which are written without any dependencies
on the google-test framework. This allows for the same tests to
be easily ported to another testing framework. Code coverage
is implemented with gcov, the GNU Project Compiler Collec-
tion [14] coverage testing tool and is complemented with a
graphical front-end named lcov [15].



Userpstoryp9Ix(

Loggingpforp
MARTepObjects

Userpstoryp9NFF

Cleanuppofpthep
Makefiles

Userpstoryp9IxD

Objectp
configurationp
basep
infrastructure

Userpstoryp9(F)

Reviewp
StringHelperp
functions

Userpstoryp9(F:

Backportp
changesponplowerp
levelspforp
Messages

IvanxHerrero

Userpstoryp9NN

GAMpbasep
infrastructure

GndrexNeto

Userpstoryp9Nxx

SLKpParser

Userpstoryp9NDN

WindowspTestp
FreepInvalidp
Pointer

NewpH)5 Arch:pImplpHF5 Arch:pRevpHF5 Code:pImplpHN5 Code:pRevpHI5 Unit:pImplpHF5 Unit:pRevpHN5 Int:pImplpHF5 Int:pRevpHF5 ClosedpHN5

Userpstoryp9(Fm

Backportp
changesponplowerp
levelspforpGAMs

Userpstoryp9(FI

Messages

RiccardoxVitelli

Userpstoryp9NxD

FixpWindowsp
Directory

IvanxHerrero

SLKpParser
GddedxbyxGndréxNetoxJxmonthsxago1xUpdatedxBxmonthsxago1

Description
ImplementxaxjsonxandxxmlxparserxbasedxonxthexSLKximplementation1xThisxsatistisfiesxrequirementsxMGRTe49X4F4C1313FxMGRTe49X4F4C1D1DFxMGRTe49X4F4C1D1/xandxx
MGRTe49X474C1/13

Sourcepcodepfilespmodified
Source,_ore,#areMetal,LC_onfiguration,JsonParser1cpp
Source,_ore,#areMetal,LC_onfiguration,JsonParser1h
Source,_ore,#areMetal,LC_onfiguration,LexicalGnalyzer1cpp
Source,_ore,#areMetal,LC_onfiguration,LexicalGnalyzer1h

Codepandpdocumentationpreview
4x7atexofxthexreview:x3z,3D,D23B
4xPersonxwhoxdidxthexreview:xIvanxHerreroxandxGndreuxNetoxMsecondxrevision-
4xResultxofxreview:xPGSSxMbutxseexnon4conformitiesxtoxbexdiscussedxinxthexnextxsprint-
4xListxofxnon4conformities:
xxx4xThexParserIxandxLexicalGnalyzerxclassesxreceivexaxstreamxbyxreferencexMStreamIq-xonxitsxconstructorFxbutxbothxstorexinternallyxthexaddressxofxthexstreamxandx
usexitxasxanxexplicitxpointerFxandxaccessingxitxonxotherxfunctions1xFromxthexpointxofxviewxofxthexuserxofxthexclassFxpassingxbyxreferencexaxparameterxinxaxfunctionx
meansxthatxthexobjectxwillxbexonlyxaccessedxduringxthexexecutionxofxthexfunctionxMconstructorxinxthisxcase-Fxbutxnotxduringxthexlifetimexofxthexinstancexofxthexclass1x
Itxshouldxbexbetterxdeclaringxitxasxanxexplicitxpointerxonxthexconstructor1

Unitptestpreview
4x7atexofxthexreview:x3z,3D,D23B
4xPersonxwhoxdidxthexreview:xIvanxHerreroxandxGndreuxNetoxMsecondxrevision-
4xResultxofxreview:xPGSSxMbutxseexnon4conformitiesxtoxbexdiscussedxinxthexnextxsprint-
4x7atexofxthexreview:x3z,3D,D23B
4xPersonxwhoxdidxthexreview:xIvanxHerreroxMolina
4xResultxofxcoveragextestsxreview:xPGSS
4xResultxofxfunctionalxtestsxreview:xPGSS
4xResultxofxreview:xPGSS
4xListxofxnon4conformities:xN,G

History

UpdatedxbyxGiuseppexFerroxBxmonthsxagoxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxK3

ppppStatuspchangedxfromx_ode:xImplxtox_ode:xRev

UpdatedxbyxGiuseppexFerroxBxmonthsxagoxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxKD

xxxx_odeximplementationxdone1x#ranchedxfromxKDzD_Parser

Associatedprevisions

RevisionxBePcw//e
GddedxbyxGiuseppexFerroxJxmonthsxago
KDzzxGddexxXMLxandxJsonxparserxandxtests1xLintxinxprogress

Revisionxwf3fz2zd
GddedxbyxGiuseppexFerroxJxmonthsxago
KDzzxFinishedxLexicalGnalyserxlinting1

Fig. 6. Snapshot of the Agile board. Each user-story is associated to a Redmine issue where its QA lifecycle is fully audited.

Static code analysis and compliance to the MISRA
C++:2008 standard is performed using the Gimpel Software
FlexeLint tool [16]. Common project deviations to the standard
are added to a file that is shared among all the developers.
Specific deviations to the standard are directly justified in the
source-code using a special syntax inside a C++ comment.
Code is expected to be developed using the Eclipse CDT [17]
integrated development environment (IDE). Eclipse is config-
ured with the project formatting, code and editor templates, as
specified in the verification and validation plan. The unit tests
can also be executed from with-in the IDE by using the Google
Tests Runner. The source-code documentation is generated
using Doxygen [18] and is integrated into the IDE through the
eclox plug-in [19]. The output of the execution of FlexeLint
has been also integrated into the editor, allowing developers to
quickly navigate to the non-compliant lines of code and to use
the static analysis tool as part of their development process.
Finally, the complet management of the Git workflow can also
be performed directly from with-in the IDE.

A. Software integration environment

The continuous integration environment is implemented
using the Jenkins software [20]. This is configured to build and

test the development version (i.e. from the Git develop branch)
of the framework every night. In particular it reports on the
testing coverage (using the cobertura [21], sonar [22] and
JUnit reporting plug-ins) and on the percentage of compliance
generated by the static code analysis tool.

VI. LESSONS LEARNED

As of today there were already 11 development releases of
the framework following the QA system. There are approxi-
mately 30000 lines of framework code and around 45000 lines
of testing code.

The compliance to the coding standard (and to the selected
MIRSA rules) is of almost 100 %. Adjusting Flexelint requires
time and expertise. A misconfigured static analysis tool will
generate a large number of false positives and might fail to
identify true errors. Given that the standard is very demanding
the amount of linting errors on any given file can be very
large (this number decreases significantly with experience).
Not having the output of the tool directly integrated into the
IDE would greatly increase the development time and possible
jeopardise the usage of the tool. It should be noted that most
of these linting errors would not prevent the compiler from
building without generating any warnings. Moreover, being



user-stories
branches

develop release
branches

hotfixes master

Sprint2
starts2
here

Quality2
review
passed

Quality2
review
failed

Quality2
review
passed

Tag
1.0

Sprint2
finishes2
here

Branch
deleted

Tag20.1

bug2fixed

Tag20.2

time

Fig. 5. The chosen Git workflow, which is based on the branching model
presented in [10].

able to justify the deviations to the standard in the source-code
increases the transparency of the QA process and facilitates
the review process.

Regarding the unit tests, more than 2500 tests are currently
being executed with a coverage in excess of 90 %. The code
sections which are most difficult to test are the ones related
to operating system or processor faults. Not using all the
functionalities of the google-test framework limits the amount
of features that could be used to facilitate the identification
of errors. On the other side, being able to execute all the
tests of the framework in a bare-metal system (based on
the ARM R© Cortex R©-M [23] has proved to be crucial for
this type of development. Driven by the limitation in the
amount of development effort available, it was decided not to
apply the coding standard to the development of the test files.
Documentation is of extreme importance and is the process
with less room for automation. As a consequence a large part
of the reviewing time is spent on verifying the documentation.

Concerning the QA processes, associating each user-story
to a new git branch has proven to be crucial in order to be
able to allocate and monitor the work in a controlled way.
Having the user-story following the V-model allows to have
full transparency on who is doing what. Even if the model has
been working very successfully, the fact that the user-story
has to be reviewed several times during its life-cycle could
possibly be optimised and further aligned to the Agile model.
In such case, the reviewers would only verify the finalised
user-story after the developers had finished the coding and
testing phases. Indeed, it already happened that a user-story,

upon test implementation, has required to change the original
code, consequently triggering the review process to start again.

Having the user-stories reviewed using the same structure
of the QA audit greatly simplifies the writing of the final
auditing. The Redmine agile board has also allowed to greatly
simplify the management of the user-stories and its associated
life cycle. Aligning sprint with releases has also proven to
work very well and allows to have all the QA reports consistent
and with the same release numbers of the software.

VII. CONCLUSIONS

The QA framework presented in this paper can be easily
adapted to the development of many types of software which
are common in the fusion community, in particular for soft-
ware related to control and data acquisition systems that is to
be shared among different teams.

Even if the effort required to setup the QA system is
not negligible, the major challenge is to make sure that
it is applied throughout the full development process. This
necessarily requires some extra-effort, but using some of the
automation techniques described above the review time can
be significantly optimised. In particular the deployment of
a static analysis tool, fully integrated in the development
editor, greatly increases the confidence that a large set of the
coding rules was correctly applied. The obvious price of not
following a complete QA system, is that it will be very difficult
to distribute and maintain the software, at least without the
continuous support of the original developers, which in turn
also has a significant trade-off cost associated to it.

REFERENCES

[1] A. C. Neto, F. Sartori, F. Piccolo, R. Vitelli, G. De Tommasi, L. Zabeo,
A. Barbalace, H. Fernandes, D. F. Valcarcel, and A. J. N. Batista,
“Marte: A multiplatform real-time framework,” Nuclear Science, IEEE
Transactions on, vol. 57, no. 2, pp. 479 –486, april 2010.

[2] A. C. Neto, D. Alves, L. Boncagni, P. J. Carvalho, D. F. Valcarcel,
A. Barbalace, G. De Tommasi, H. Fernandes, F. Sartori, E. Vitale,
R. Vitelli, and L. Zabeo, “A survey of recent marte based systems,”
IEEE Transactions on Nuclear Science, vol. 58, no. 4, pp. 1482–1489,
2011.

[3] D. Alves, A. C. Neto, D. F. Valcrcel, R. Felton, J. M. Lpez, A. Barbalace,
L. Boncagni, P. Card, G. D. Tommasi, A. Goodyear, S. Jachmich, P. J.
Lomas, F. Maviglia, P. McCullen, A. Murari, M. Rainford, C. Reux,
F. Rimini, F. Sartori, A. V. Stephen, J. Vega, R. Vitelli, L. Zabeo,
and K. D. Zastrow, “A new generation of real-time systems in the jet
tokamak,” in Real Time Conference (RT), 2012 18th IEEE-NPSS, June
2012, pp. 1–9.

[4] A. Wallander, L. Abadie, H. Dave, F. Di Maio, H. Gulati, C. Hansalia
et al., “ITER instrumentation and controlstatus and plans,” Fusion
Engineering and Design, vol. 85, no. 3 - 4, pp. 529 – 534, 2010.

[5] git, https://git-scm.com/, 5/26/2016.
[6] Programming Languages—C++, 2003, ISO/IEC 14882:2003(E).
[7] MISRA C++:2008 Guidelines for the Use of the C++ Language in

Critical Systems, 2008, ISBN 978-906400-03-3 (paperback), ISBN 978-
906400-04-0 (PDF).

[8] The Scrum Guide, https://www.scrumalliance.org/why-scrum/scrum-
guide, 5/25/2016.

[9] GitLab, https://about.gitlab.com/, 5/26/2016.
[10] A successful Git branching model, http://nvie.com/posts/a-successful-

git-branching-model/, 5/26/2016.
[11] Redmine, http://www.redmine.org/, 5/26/2016.
[12] Scrum and Agile project management plugin for redmine,

http://www.redminecrm.com/, 5/25/2016.
[13] Google Test, https://github.com/google/googletest, 5/26/2016.
[14] gcov, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, 5/26/2016.



[15] LCOV - the LTP GCOV extension,
http://ltp.sourceforge.net/coverage/lcov.php, 5/26/2016.

[16] FlexeLint for C/C++, http://www.gimpel.com/html/flex.htm, 5/25/2016.
[17] Eclipse CDT (C/C++ Development Tooling), https://eclipse.org/cdt/,

5/26/2016.
[18] Doxygen, http://www.stack.nl/ dimitri/doxygen/, 5/26/2016.
[19] Eclox, http://home.gna.org/eclox/, 5/26/2016.
[20] Jenkins, https://jenkins.io/, 5/26/2016.
[21] Cobertura, http://cobertura.github.io/cobertura/, 5/26/2016.
[22] SonarQube, http://http://www.sonarqube.org/, 5/26/2016.
[23] G. Ferrò, A. C. Neto, F. Sartori, L. Boncagni, D. Carnevale, M. Gospo-

darczyk, A. Monti, A. Moretti, R. Vitelli, L. Capella, and I. Herrero,
“Embedded implementation of a real-time switching controller on a
robotic arm,” in Proc. 20th IEEE-NPSS Real Time Conf. (RT), 2016.


