
• network driver registered as interface pex0

• debugging and tuning via /sys/class/net/pex0

• all frontend and receiver control via socket ioctl()

• interface configuration with generic network tools

• concurrent control access is protected by kernel mutex

• internal pool of DMA buffers according the defined MTU

• trigger interrupt bottom half does implicit data request, read out and

preparation of socket buffers

• readout is protected against control access by spinlock

• frontend data is delivered via generic socket() as UDP packets from a

virtual remote host

• various DAQ frameworks and other software may read and inspect data

pexornet kernel module

mbspex and pexornet - linux device drivers
for PCIe optical receiver data acquisition and control

Jörn Adamczewski-Musch, Nikolaus Kurz, Sergei Linev, GSI, Darmstadt, Germany

20-th IEEE Real-Time Conference, 5-10 June 2016, Padova, Italy

The GSI PEXOR family PCIe boards are used as
interface for data acquisition from various detector
front-ends, linked by up to 4 chains of optical fiber
connections. Communication with the front-end
hardware is handled by the proprietary gosip
protocol. A trigger module TRIXOR extends the
PEXOR by additional signal connections for triggered
data acquisition.
For several years the PEXOR boards have been
applied with the data acquisition framework MBS. On
Linux x86 platform, the device driver software
mbspex implements concurrent access to the PEXOR
front-ends from MBS DAQ, and from separate control
applications, like the command line tool gosipcmd or
hardware specific configuration GUIs.
Besides the established character driver mbspex, a
network driver pexornet has been developed to
evaluate a lightweight DAQ system with readout from
PEXOR via UDP socket. Therefore common network
tools can be applied for driver configuration and data
debugging. Moreover, the gosipcmd tool and its
adjusted API library are fully applicable also for
pexornet. A simple example DAQ application with
pexornet UDP readout has been implemented with
the software framework DABC, delivering the same
data file format and online monitoring capabilities as
MBS.
Readout performance of a test set-up has been
measured both with MBS / mbspex, and with DABC /
pexornet.

Abstract

Control software and GUIs:

• both drivers allow concurrent control access

during data taking

• pexornet can use all tools of mbspex

• pexornet can also use generic network tools

DAQ frameworks:

• mbspex is bound to MBS framework

• pexornet can be read out by any UDP receiver

software

• pexornet can produce MBS data format with DABC

receiver

DAQ performance:

• both drivers show similar performance

• pexornet may lose UDP packets depending on

load (e.g. file i/o)!

• mbspex with MBS has no data loss - (instead:

backpressure on hardware dead time due to

explicit readout requests!)

pexornet TO DO:

• implement missing network hooks in kernel

module (ethtool,...)

• performance tuning

• DMA into pre-allocated socket buffers?

• implement other readout protocol than UDP?

Conclusions

mailto: j.adamczewski@gsi.de

• character driver accessible via /dev/pexor0

• debugging and tuning via /sys/class/mbspex/pexor0

• all frontend and receiver control via custom file ioctl()

• concurrent access is protected by kernel mutex

• mmap() maps physical DMA buffer memory outside kernel space

(“MBS pipe”), reserved at boot time,

• trigger interrupt handler changes wait semaphore to be evaluated in

userland via ioctl()

• explicit data request from MBS required for readout

• tailored for DAQ software framework MBS

mbspex kernel module

Jörn Adamczewski-Musch

mbspex components

Linux Kernel

mbspex.ko

PCIe layer

gosip chain

MBS

pipe memory

data

libmbspex.a

gosipcmd

X86 PC

mmap() ioctl()

filesystem /dev/pexor0

DABC

webserver

GUI

shell>gosipcmd -z

kernel module

library

commands and tools

PEXOR

http://

DMA

DAQ

control systems

command line control interface gosipcmd:

available for both drivers with (almost) same syntax

(pexornet adds “start/stop acquistion” commands to change

interrupt readout state)

gosipcmd

• Reset PEXOR, initialize SFP chains

• Read/Write any address on frontend

boards

• broadcast mode: read/write same

register to all connected slaves

• multiple words read/write

• register bit manipulation

• configure / verify with script files *.gos

• plain or verbose output mode

Data rate trending at MBS /mbspex readout of 2 FEBEX sampling ADCs at one PEXOR

chain. Triggered by 20 kHz pulser. Host: 8 soft cores, 4GB RAM, kernel 3.2.0-amd64.

Decrease of rate is due to file writing to NFS mounted disk.

CPU load: 3 x 100% (polling for frontend data mode, early trigger clear)

DAQ with MBS/mbspex

time (h:m:s)

start file stop file

effective file bandwidth:

54 Mbyte/s

(from ∆t of consecutively

recorded 2GB files)

D
a

ta
 r

a
te

 (
k
B

y
te

/s
)

150 Mbyte/s

7900 Ev/s

Data rate trending at DABC/pexornet readout of 2 FEBEX sampling ADCs at one PEXOR

chain. Triggered by 20 kHz pulser. Host: 8 soft cores, 4GB RAM, kernel 3.2.0-

amd64.Decrease of rate is due to file writing to NFS mounted disk.

CPU load: 95% ksoftirq, 60% dabc threads (polling for frontend data mode)

Lost UDP packets > 6840 x 20.3 kB = 136 MB (from local event counter check)

DAQ with DABC/pexornet

time (h:m:s)

D
a

ta
 r

a
te

 (
M

B
y
te

/s
)

start file stop file

effective file bandwidth:

57 Mbyte/s

(from ∆t of consecutively

recorded 2GB files)

143 Mbyte/s

7600 Ev/s

 pexornet components

pexornet.ko

Linux Kernel

 PCIe layer

data

libpexornet.a

gosipcmd

X86 PC

ioctl()

network device pex0

GUI

gosipcmd –a

ifconfig pex0 mtu 64000

ethtool pex0

PEXOR

http://

DMA

dmabuf
 dmabuf

dmabuf

network layer

socket()

skbuf

 data
skbuf

 data
skbuf

 data
skbuf

 data

ifconfig

ethtool

DABC

webserver

recv()

readout.c

 recvfrom()

UDP

iftop

skbuf

eth

ip

udp

data

wireshark

Comparison of data taking between MBS/mbspex and DABC/pexornet at different pulser trigger frequencies. Hardware setup with

2 FEBEX sampling ADC frontends at one SFP chain, as described above. Acquired data is not written to file, but checked for

validity by online analysis at stream server socket with Go4 software. Both DAQ systems can fully handle event rates up to 5kHz

(90MiB/s) for such setup. At 20kHz trigger rate, the “early trigger clear” readout mode can increase performance up to 8kHz

(150MiB/s). In this mode, the TRIXOR trigger hardware is reset before data is read from the double buffered FEBEX front ends.

Here in fact one DAQ process (MBS), or the kernel tasklet (pexornet), is polling for the “data ready” state of the GOSIP

transmission, instead of waiting for the next trigger interrupt.

DAQ performance comparison

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

Ev
en

t
ra

te
 (

kE
ve

n
ts

/s
)

Trigger rate (kHz)

Eventrate MBS

Eventrate DABC

0

20

40

60

80

100

120

140

160

0.1 1 10 100
Trigger rate (kHz)

Datarate MBS (MiB/s)

Datarate DABC (MiB/s)

interrupt mode

polling mode

control GUIs

Frontend board configuration:

• local Qt based GUI

• uses gosipcmd

 (via shell)

• may use directly libmbspex

 (via linkage)

• tailored for specific FEB

 (poland, nyxor, febex,...)

DAQ run control:

• web based GUI in browser (jQuery.ui)

• uses DABC web server

• may control MBS via DABC proxy

• may control DABC readout directly

• can record DAQ performance trending

Data online monitoring:

• Go4 analysis framework (ROOT)

• reads DAQ samples via stream server socket

(available both at MBS and DABC)

• same code can monitor either DAQ systems

