
1

A UVM Based Testbench Research for ABCStar
Li-Bo Cheng, Francis Anghinolfi, Ke Wang, Member, IEEE, Hong-Bo Zhu, Wei-Guo Lu, Zhen-An Liu, Senior

Member, IEEE

Abstract—ABCStar is a front-end readout ASIC under de-
velopment and aims to read out the silicon strip sensor for
ATLAS Phase II upgrade. Its digital part will include two levels
of buffering, several trigger modes, cluster identification, data
formatting, and etc. To simulate and verify its full functions,
we have built a well-constructed testbench with the Universal
Verification Methodology (UVM), which represents an advance
and powerful verification methodology based on SystemVerilog.
Features of the testbench include: functional coverage evaluation,
result comparison with reference models, and selected SystemVer-
ilog assertions for validating key design features.

Index Terms—ABCStar, ASIC, Assertion, Functional Cover-
age, Testbench, UVM, Verification.

I. INTRODUCTION

THE Large Hadron Collider (LHC) in CERN, as the
largest collider around the world, is designed for particle

physics research. After the successful discovery of higgs boson
in 2012 [1][2], the collider is planning a series of upgrade
projects in upgrading its energy and luminosity, to uncover
new physics in high energy physics.

In Phase-II upgrade, the LHC will run at the center-
of-mass energy of 14 TeV, with an integrated luminosity
upgraded to 3000 fb−1. To precisely detect particles from
this unprecedented high energy and luminosity collider, the
inner tracker detector of ATLAS, one of the large detector in
LHC, is planing being completely rebuilt with an all-new all-
silicon detector, and includes inner pixel detector and outer
strip detector. The outer strip detector will contain more than
190 m2 of n-in-p planar silicon-strip sensors, including a barrel
and two endcaps. Each sensor has a size of 97.54×97.54 mm2,
and 1280 readout strips in total[3].

ABCStar is an under developed ASIC for the strip detector
front-end readout, each of which will processing 256 readout
strips, with analog part and digital part. The analog part would
receive 256 channels of inputs from detector, each channel
with a preamplifier, a shaper and a discrimination comparator.
And the digital part would get the 256-channels discrimination
result (256-channels hits), controlling output these strip hit
data by several possible trigger modes, finding all clusters in
them, and output these clusters with packets.

Manuscript received May 30, 2016. This work was supported in part by
National Natural Science Foundation of China (11435013).

Li-Bo Cheng is with the State Key Laboratory of Particle Detection and
Electronic, IHEP, UCAS, Beijing 100049, P.R.China.

Francis Anghinolfi is with CERN, Geneve CH-1211, Switzerland.
Ke Wang, Hong-Bo Zhu, Wei-Guo Lu, are with the State Key Laboratory

of Particle Detection and Electronic, IHEP, Beijing 100049, P.R.China.
Zhen-An Liu is with the State Key Laboratory of Particle Detection and

Electronic, IHEP, Beijing 100049, P.R.China (telephone: +86-010-88236718,
e-mail:liuza@ihep.ac.cn).

Universal Verification Methodology (UVM), as the first s-
tandardized verification methodology in 2011, is very powerful
in digital ASIC design verification based on SystemVerilog,
and split traditional verification testbench with several hier-
archical functional units, for extensive and reusable. Main
functional components of a typical UVM testbench include a
sequence path for producing and driving constraint randomized
stimulus to Design Under Test (DUT), a coverage module for
collecting specific functional coverage to see whether a certain
case has existed or not, and a reference module with the same
function as DUT for comparing in a scoreboard module.

In addition, UVM provides a register model, which can
track the register content of a DUT by a convenience layer
accessing register and memory within the DUT [4][5].

Furthermore, we bring SystemVerilog Assertion(SVA) to the
testbench. A SVA is simply a check against the specification
of design to make sure never violates in realtime. There are
three kinds of assertions in SVA:[6]

• Immediate Assertion: Non-temporal domain assertions
that are executed like statements in a procedural block;

• Concurrent Assertion: Temporal domain assertions that
allow creation of complex sequences using clock based
semantics;

• Deferred Assertion: A special type of immediate asser-
tions with a time stamp.

In this paper we present a UVM based well-constructed
testbench for ABCStar, including the common structure of
UVM testbench, and some concurrent assertions for checking
key features of Input Register of ABCStar, such as mask
function, and edge detection function.

II. DIGITAL PART DESIGN OF CURRENT ABCSTAR

The full ABCStar design simplified block diagram is
showed in Fig. 1. The digital part blocks include: Mask and
Edge Detection input register, L0Buffer, EvtBuffer, Cluster
Finder, Readout logic, Top Logic, and Command Decoder.[7]

Fig. 1. Block diagram of the ABCStar.978-1-5090-2014-0/16/$31.00 c©2016 IEEE

In Input Register, it has four edge detection modes, showed
in TABLE. I. Also it supports enabling any bad or noisy
channels to be turned off through a mask register:

InReg out[255:0] = stripdata[255:0] & maskbits[255:0]

TABLE I
EDGE DETECTION CRITERIA

mode(1:0) Selection criteria Hit pattern Usage

00 Hit 1XX or X1X Detector alignment
or XX1

01 Level X1X Normal Data Taking

10 Edge 01X Normal Data Taking

11 Clear None Special Mode

There are three trigger data flow controls in present design:
L0, PR, and LP. Distribution of rate and latency of these
triggers are showed in Fig. 2. At every occurrence of L0,
one event of the L0Buffer is written into EvtBuffer. At every
occurrence of PR or LP, one event is read out from EvtBuffer
and send to the Cluster Finder block.

Fig. 2. L0, LP and PR distribution.

The Cluster Finder would take in 256 bits of strip data and
report out 12-bit clusters at 40 MHz. All clusters would be
read out by packets through readout block. Each packet is
transmitted to the fast 160 Mb/s serializer. Packet format is
showed in Fig. 3.

Fig. 3. Packet format of the ABCStar

In ABCStar, chip reset and internal registers configuration
are controlled by commands. The ports of current ABCStar
digital part design are showed in TABLE. II.

III. TESTBENCH DESCRIPTION

In Fig. 4 we show the diagram of the UVM based testbench
for ABCStar. There are four main features of the testbench,
i.e., five sequence paths, reference model, functional coverage,
and assertions.

TABLE II
PORTS LIST OF CURRENT ABCSTAR

Port name Direction Describe

RCLK input 160MHz Clock input primarily
intended for Data Readout

BC input Beam Crossing Clock at 40MHz

RSTB input Asynchronous hard reset

powerUpRstb input Reset from Power Up circuit

abcup input Serial input reset

chipID input Chip identification

L0 CMD input L0 Synchronous Trigger with BC falling edge,
CMD(command) with BC rising edge

LP PR input LP with BC rising edge, PR with falling edge
CMD(command) with BC rising edge

DataOut output Serialized packet readout

Fig. 4. Diagram of ABCStar testbench based on UVM

A. Five Sequence Paths

Since three triggers, command and stripdata input are all
independent in timing, we built five independent sequence
paths for them. Each path would send corresponding constraint
randomized stimulus to the DUT according to tests. The UVM
stimulus generation process is based on sequences controlling
the behavior of drivers by generating sequence item and
sending them to the driver via a sequencer.

Command sequence path is a special one, which includes
a register model. Register model in UVM is proposed for
simulating the behavior of configuring internal registers in
DUT, including writing and reading. We build a register model
including all commands of ABCStar in this testbench.

B. Reference Model

For the reference, it should have the same function with
DUT. Since the function of Input Register, L0Buffer, Evt-
Buffer, and Command Decoder, are very complex in tim-
ing, for their unfixed latency and data integration between
different sub-modules. However, function of Cluster Finder
and Readout Circuit, are complex in data logical processing,
and timing is relatively simple. We built the reference with
a mixture C and SystemVerilog languages. C is priviledge in
data operation, and we use it for modeling the function of
Cluster Finder and Readout circuit. SystemVerilog is extended
from verilog, and has some powerful system functions related

to timing, so we use it for modeling the function of other
blocks of ABCStar with complex timing.

C. Functional Coverage

In coverage module, we built three covergroups for maskbit-
s&stripdata, Input Register output data, and EvtBuffer output
data respectively. Each covergroup would collect all 256 chan-
nels hit. TABLE. III list all covergroups and their descriptions.

TABLE III
COVERGROUP LIST OF THE TESTBENCH

Covergroup name Number of bins Describe

maskbits cov 256 Statistic for all 256 channels
maskbits&stripdata hits

InReg out cov 256 Statistic for all 256 channels
InReg out hits

buf out cov 256 Statistic for all 256 channels
EvtBuffer output data hits

D. Assertions

We also built some assertions for checking key features
of ABCStar. In TABLE. IV we list all assertions. Including
8 concurrent assertions and 1 immediate assertion. Concur-
rent assertions are used for assert complex sequences using
clock(sampling) edgebased semantics in temporal domain.
The immediate assertion is purely combinatorial, and used in
scoreboard comparing two packet results, which one from the
reference, and another from the DUT output.

TABLE IV
ASSERTION LIST OF THE TESTBENCH

Assertion name Useage type

pip ThreeBC lev ass For asserting InReg edge concurrent
detection mode(level)

pip ThreeBC hit ass For asserting InReg edge concurrent
detection mode(hit)

pip ThreeBC edge ass For asserting InReg edge concurrent
detection mode(edge)

pip datatakingmod ass For asserting InReg working concurrent
mode(normal data taking)

pip tstprinBCIDmod ass For asserting InReg working concurrent
mode(test printing BCID)

pip loadmaskbitsmod ass For asserting InReg working concurrent
mode(test loading maskbits)

pip pulsetestmod ass For asserting InReg working concurrent
mode(pulse test)

L0 Pipeline ass For asserting L0 controlling concurrent
data output from L0Buffer

packet compare For the scoreboard packets immediate
comparing

IV. TEST RESULTS

Based on the testbench we built, we did several tests with
random constraint conditions to check the main functions of
ABCStar, These are three typical tests, edge detection models
test, maskbits test, and trigger combination test.

A. Edge Detection models test
There are three used edge detection models in Input Register

of ABCStar, and one kept for special usage. The test includes:
• Limiting the hit channels number of stripdata input less

than 6, and transform three modes with each other after
each with a long running time.

• Checking the output of the input register with three
concurrent assertions respectively for three edge detection
model.

• Collecting hit coverage message of every output data
channel.

The statistic for the coverage is showed in Fig. 5. It is
obvious that all channels are covered (hit at least once). In
Fig. 6 we present the results of assertions, which shows that
all three assertions are finished without any failure count.

Fig. 5. InReg outputdata channels hits statistic for edge detection modes
test.

Fig. 6. Assertions result of edge detection modes test.

B. Maskbits test
Input Register also support a choice to turn off any bad or

noisy channels through a mask register. To verify this function,
we set:

• Limiting the random hit channels number of stripdata
input less than 6, and change maskbits value with the
command after each running a long time.

• Checking the output of the input register with a concur-
rent assertion.

• Collecting hit coverage message of every maskbit-
s&stripdata result channel.

The statistic for the coverage is showed in Fig. 7. From the
figure, we can see that all channels are covered (hit at least
once). Fig. 8 is the results of assertions, which shows that all
assertions are finished without any failure count.

Fig. 7. Block diagram of the ABCStar.

Fig. 8. Assertions result of maskbits test

C. Trigger combination test

There are three trigger controls in present design, L0, LP,
and RP, whose distributions are showed in Fig. 2. To simulate
the distribution, we use constraint randomized stimulus to set:

• L0 with a fixed latency.
• LP with a Possion distribution latency with mean of 480

BCs (12 us).
• PR with a Possion distribution latency with mean of 480

BCs (12 us).
• Checking all packets output with an immediate assertion

in scoreboard with the reference.
• Collecting hit coverage message of all Evtbuffer output

data channels.

The intervals between two LOs, LPs, and PRs all subject
to Possion distributions with the mean of 40 BCs (1 us, rate
is 1 MHz, 1 BC = 25 ns). In Fig. 9 we present the statistic
for the intervals of L0 and LP and PR, which shows that the
intervals is just produced as expected.

Fig. 9. maskbits&stripdata channels statistic for maskbits test.

In Fig. 10 we present the statistic for the latency of LP and
PR, which show that the latency is just produced as demands.

The statistic for the coverage of Evtbuffer output is showed
in Fig. 11. It is obvious that all channels are covered.

Fig. 12 is the assertion comparing result for every packet. It
shows that all packet comparing finished without any failure
count.

Fig. 10. LP and PR latency statistic for trigger combination test

Fig. 11. Channels hits statistic for EvtBuffer output data for trigger
combination test.

Fig. 12. Assertions results of trigger combination test.

V. CONCLUSIONS AND DISCUSSIONS

We built a well-constructed UVM based testbench for
ABCStar. It includes functional coverage statistic, a reference
for comparing, and some assertions checking in real time.
Then we did several tests based on the testbench to check
the main design features of ABCStar, by using constraint
randomized stimulus theory to simulate the real possible data
input activity.

One of the most challenging task in our work is modeling
the reference model. At first, we built a testbench only for
verifying the ClusterFinder module of ABCStar, and the
reference model is written by C language alone. However,
when we consider verifying all functions of ABCStar, using
C language alone to modele the new complicated reference
seems impossible. In this case, we split the reference into two
parts, written by C language and SystemVerilog respectively,
with one part to model functions without complex timing and
the other part to model functions with complex timing, .

Another cumbersome part is producing stimulus for all three
triggers, command, and stripdata inputs. It is very difficult to
produce stimulus for all these signals in a sequence path, since
they all independent with each other in timing. To solve this
problem, we built five sequence paths for them respectively.

Our study shows UVM is very powerful in simulating
and verifying digital ASIC design. Its constraint randomized
stimulus can help simulating the real possible data input
activity, and its functional coverage and assertions can ensure
believability of the verification.

REFERENCES

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)
doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].

[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012)
doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].

[3] The ATLAS Collaboration, ATLAS Phase-II Upgrade Scoping Docu-
ment. url:https://cds.cern.ch/record/2055248, 2015.

[4] Accellera, UVM 1.1 User’s Guide. 2011.
[5] Ashok B. Mehta. SystemVerilog Assertions and Functional Cover-

age. Springer-Verlag New York, 2014.
[6] Mentor Graphics Verification Methodology Team. Verification Acade-

my Cookbook. url:http://verificationacademy.com/uvm-ovm, 2013.
[7] ATLAS ITK Electronics Specification Component or Facility Name:

ABCstar. (internal ATLAS note), 2015.

