Complete Parallel Readout VME DAQ System

H. Baba!, T. Ichihara®, T. Ohnishi', K. Yoshida®, Y. Watanabe', S. Ota?, S. Shimoura?, R. Yokoyama?,
S. Takeuchi?, D. Nishimura? and A. Tokiyasu®
IRIKEN Nishina Center, Wako, Saitama 351-0198, Japan
2Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan
3Department of Physics, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
4Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
SResearch Center for Electron Photon Science, Tohoku University, Sendai, Miyagi 982-0826, Japan

In RIKEN RIBF, a new low-cost VME controller has been
developed. The noteworthy feature is that data readout can
be parallelized even VME modules are installed in the same
VME crate. Therefore, the performance of the VME-based
DAQ system will be maximized. In this contribution, we
report the specification of the developed VME controller and
the performance of the complete parallel readout VME DAQ
system.

RIKEN RIBF is a nuclear physics research facility gen-
erating unstable nuclei. The length of the beam line is over
100 meters, and several detector sets are installed at distant
places. Several CAMAC and VME front-end systems are
installed along the beam line. Individually taken data are
merged by RIBF DAQ system [1]. The dead time of the
system is determined by the number of readout channels per
CAMAC/VME controller. The bus frequency is limited by the
system specification. To achieve a higher speed, the number of
readout channels and the interrupt latency should be reduced.
Recently, FPGA-based bus controllers have been distributed
by companies. CC/NET [2] and VM-USB [3] are FPGA-
based CAMAC and VME controllers that can run as a list
sequencer. They can achieve the intrinsic readout speed of
buses. Moreover, the interrupt latency is quite shorter than
that of the usual PC-to-VME system. These controllers are
enough good. However, it is almost impossible to install many
controllers for reducing the readout channel per controller,
due to the cost. In this study, we have developed a new
truly low-cost VME controller to maximize the performance
of the VME-based DAQ system. This controller is named as
“MOCQO” that stands for mountable controller for VME.

A photograph of MOCO is shown in Fig. 1. This controller
mainly consists of FPGA (Xilinx, XC3S50AN, Spartan 3AN)
and USB2.0 slave (FTDI, FT2232H Hi-speed Dual USB
UART/FIFO) chips. The implemented VME functions are
listed below.

o Address mode : A32, A24, A16

e Program I/O : D16 Read/Write, D32 Read/Write
e Block I/0 : D32 Block-Read

o Interrupt detection (IRQ)

o Buss error detection (BERR)

In addition to these VME functions, MOCO has auxiliary 4-ch
LVDS input/output (Aux I/O) ports. These Aux I/O ports are
used to synchronize with other systems by receiving a trigger

Aux /0
Trigger / Busy

DC
Power

from VME BUS
or DC source

VME
Module

A32/A24/A16
D32/D16
Read/Write
BLT

Fig. 1. Photograph of the mountable controller for VME (MOCO).

and generating a busy (or end-of-busy) signals. MOCO can
be controlled by a usual PC through the USB port. When
MOCO receives a readout command from the PC, VME data
is stored into the FIFO memory of the USB chip. MOCO
has some special operation modes to continuously read data
from the module without PC intervention. An example of the
continuous-readout operation mode is as follows:

1) MOCO waits the trigger signal from Aux I/O

2) If the trigger is arrived, MOCO waits the IRQ signal
from the module

3) When the IRQ signal is issued, MOCO starts readout

4) MOCO takes data until the preset number of readout
cycle is reached or BERR is generated by the module

5) When the readout cycle is terminated, MOCO generates
the end-of-busy signal through Aux I/O

6) Go back to 1)



Transaction Time for 34 word readout (From IRQ generation to the last word into USB FIFO) = 7.8 us |

l¢
<

Sampling Clock

VME IRQ1* 1
VME AS* ] P
VME DS*

VME DTACK*

1N Y T T I Y

USB FIFO WR_EN* =1 'I’
VME data to FPGA FIFO

=1 Clock=17ns FPGA FIFO to USB FIFO

=4 Clock = 67 ns

FPGA FIFO WR_EN .j’ml |

VME Block Transfer (DS to DTACK)
=0.2us

Fig. 2. Timing chart of the response of the interrupt signal and 34 data block readout.

The transaction time of the VME operation could be mini-
mized with this special operation mode. It is also possible to
implement more complex readout sequence in MOCO.

The transaction time of MOCO has been investigated.
Figure 2 shows the timing chart of the interrupt response and
the block transfer. The FPGA chip in MOCO is configured
such that when the interrupt signal is generated, 34 data (34 x
32 bit = 272 bytes) are readout from a CAEN V792 QDC and
transferred to the USB chip. The timing chart is obtained by
ChipScope Pro [4], which is a debug tool to inspect the interior
of FPGA. VME AS* (Address Strobe), DS* (Data Strobe), and
DTACK* (Data Acknowledge) are VME bus signals used to
perform handshake. Note that an asterisk (*) following the
signal name represents inverted signals. First, VME data are
stored in the FPGA FIFO memory (FPGA FIFO WR_EN).
Subsequently, data is transferred to the USB FIFO memory
(USB FIFO WR_EN¥*). The sizes of both FIFO memories are
4 kBytes. The transaction time of this sequence is only 7.8 us
(1 data readout ~ 0.2 us). This speed is almost the maximum
performance of CAEN V792 QDC. The worst interrupt latency
is only 16.6 ns since the FPGA watches the VME IRQ* signal
every 16.6 ns (synchronized with a 60 MHz clock). This
interrupt latency corresponds to a speed that is 1000 times
higher than the speed of the usual PC-to-VME system.

MOCO can be inserted between the VME module and the
VME bus. Figure 3 shows a photograph of the installation.
This case, VME bus signals on the VME crate are ignored,
and only power lines are used. Therefore, even multiple VME
modules together with MOCO are installed in the same VME
crate, it is possible to readout data in parallel.

Data from VME modules are accumulated by the PC
through the USB 2.0 interface. The data transfer rate from
MOCO to the computer server via Ethernet by Raspberry Pi 2
has been measured. The maximum rate was 64 Mbps. This rate
is not as high as the VME bus specification. However, in case
of usual ADC/QDC/TDC VME modules, this performance is
enough high.

The production cost of the controller is about 18,000 JPY
(=~ 150 USD). The price of the Raspberry Pi 2 is about 4,800
JPY (~ 40 USD). In the total, the cost is 22,800 JPY (~ 190
USD) to take data from 1 VME module. If the required data
rate is not so high, multiple VME modules can be handled
from the same PC. In this case, the system will be further low
cost.

Fig. 3. Photograph of the installation in the VME crate. MOCO is inserted
between the VME module and the VME bus.

This MOCO based “Complete Parallel Readout VME DAQ
System” has been installed to acquire data from the beam
line detectors in RIBF113 and RIBF79R1 experiments at
RIBF RIKEN. These experiments were scheduled April 9-
22th 2016 (RIBF113) and May 15-25th 2016 (RIBF79R1),
respectively. In these experiments, 7 x CAEN V1190 TDC,
2 x CAEN V1290 and 1 x Niki-glass LUPO modules were
installed together with MOCO. Typical total data rate from
these 10 modules was 2.7 MBytes/sec. And the live time ratio
was > 99% with respect to generated physics triggers. This
performance is more than 3 x better than the standard VME-
based RIBF DAQ [1].

In summary, we succeed to develop the very low-cost VME
controller (MOCO). Even the low-cost PC such as Raspberry
Pi, it can transfer data at a sufficient rate. By installing multiple
MOCO, the complete parallel readout VME DAQ system was
successfully constructed.

REFERENCES

[1] H. Baba et al., Nucl. Instrum. and Meth. A, vol. 616, pp. 65-68 2010
H. Baba et al., Proc. IEEE Nucl. Sci. Symposium Conf. Record 2008,
1384-1386

[2] Y. Yasu et al.: Comp. High Ene. Nucl. Phys. (2003) 24.

[3] Wiener VM-USB User Manual.

[4] Xilinx ChipScope Pro Software and Cores User Guide.



