
Modular Software for MicroTCA.4
Based Control Applications

N. Shehzad, M. Killenberg, M. Heuer, M. Hierholzer, L. Petrosyan, C. Schmidt, T. Kozak, G. Varghese, M. Viti,
S. Marsching, M. Mehle, T. Sušnik, K. Žagar, A. Piotrowski, P. Prędki, J. Wychowaniak, K. Czuba,

A. Dworzanski

Abstract—The MicroTCA.4 crate standard provides a power-
ful electronic platform for digital and analogue signal process-
ing. Besides excellent hardware modularity, it is the software
reliability and flexibility as well as the easy integration into
existing software infrastructures that will drive the widespread
adoption of the standard. The DESY MicroTCA.4 User Tool Kit
(MTCA4U) is a collection of C++ libraries which facilitate the
development of control applications. The device access library
allows convenient access to hardware with an extensible register
based interface. Starting from PCI Express, which is used
inside a MicroTCA.4 crate, the introduction of new, network
based protocols extends its reach beyond a single crate and
even MircoTCA itself. Features like register name mapping and
automatic type conversion provide a level of abstraction which
makes the software robust against firmware and even hardware
changes. Bindings to widely used scripting tools like Matlab
and Python as well as a graphical user interface complete the
portfolio needed for fast prototyping and firmware development.
We give an update on the project status and present new features
which have recently been introduced or are currently being
implemented.

I. INTRODUCTION

M ICROTCA is a modular open source standard for
switched fabric computer systems. The MicroTCA

standards comprises basic system specifications including
backplane, cooling, power management and different Ad-
vanced Mezzanine Card(AMC) to build a modular system.
A MicroTCA.4 crate provides high-speed synchronous data
acquisition in time critical systems and helps creating a
robust and fail safe system by allowing hot swapping of the
modules. [1][2]

II. DESY MICROTCA.4 USER TOOL KIT - MTCA4U

The Desy MicroTCA.4 User Tool Kit (MTCA4U) comes
with a range of tools to provide easy access to the MircoTCA.4
devices with minimal effort. It contains a C++ library which
can be used to create or extend the software to access such

Manuscript received June 16th, 2016. This work was supported by the
Helmholtz Validation Fund HVF-0016 MTCA.4 for Industry.

N. Shehzad, M Killenberg, M. Heuer, M. Hierholzer, T. Kozak, L. Pet-
rosyan, C. Schmidt, G. Varghese, M. Viti are with Deutsche Elektronen-
Synchrotron, Hamburg, 22607 Germany.

S. Marsching is with aquenos GmbH, Baden-Baden, Germany.
M. Mehle, T. Sušnik, K. Žagar are with Cosylab d.d., Ljubljana, Slovenia.
A. Piotrowski is with FastLogic Sp. z o.o., Łódź, Poland.
P. Prědki, J. Wychowaniak are with Łódź University of Technology, Łódź,

Poland.
K. Czuba and A. Dworzanski are with the Warsaw University of Technol-

ogy, Warsaw, Poland

devices. The tool kit provides a testing framework for the soft-
ware. This makes it easy to design and test a piece of software
without the hardware. It also provides an interface between the
control systems and the middle layer software to maximize the
use of coherent software. The tool kit architecture is shown in
Fig.1.

III. LINUX PCI EXPRESS DRIVER

In MicroTCA.4, devices usually connect to a CPU in the
crate via PCI Express. The MTCA4U tool kit comes with an
open source Linux kernel driver which provides an interface to
the PCI Express bus. We use the Linux Device Driver Model to
split and modularized the driver into two layers. The first layer
is device independent and implements the PCI Express I/O
address space. The second layer consists of device dependent
features. This allows the first layer to be universal and reusable
as this component is common to all PCI Express devices.
Other device features like Direct Memory Access (DMA)
are separated and stacked into the second layer. The devices
developed at DESY use a standard register set and DMA
mechanism provided by the firmware. This way a common
driver can be used for most of the DESY devices. For devices
coming from other vendors, the off the shelf universal driver
provides quick access to all the basic features. Only device
specific issues needed to be addressed. This way new devices
could be added to the driver family without changing the
interface. MTCA4U also supports Hot Plug on MicroTCA.4
crates as provided by the Linux kernel.

IV. THE C++ DEVICE API

The core function of the C++ API is to provide an easy
interface to access the device without any hardware knowl-
edge or the implementation details of the device specific
input/output operations. The C++ library comes with a class
called Device, which can be used to create an easy and quick
access to the device’s address space. The library provides
different types of back-ends. For example the PcieBackend
is used to access the aforementioned MicroTCA.4 boards
which are connected via PCI Express or special back-end
called DummyBackend can be used to simulate a device
and its firmware functionality which is very useful for test-
ing. The C++ API has been extended to access devices
other than MicroTCA.4 based boards. The RebotBackend
uses the Register-based over TCP (ReboT) protocol to ac-
cess the devices via Ethernet and a DoocsBackend can

Linux
Driver

/dev/mtca_slot0

Register
Map

C++ Device API

Qt Hardware Monitor

LLRF Library

C++ LLRF Application

DOOCS

LLRF DOOCS Server

EPICS

LLRF EPICS Server

OPC-UA

LLRF OPC-UA Server

Board Support Package

Mapping
Library

YOUR Control System

YOUR LLRF Server

Firmware

Control System Adapter

Command Line Tools

Matlab Bindings

Python Bindings

VirtualLab

Open Source
- Driver
- Base API + Language Bindings
- Hardware Monitor
- Control System Tools

Closed Source (example)
- Low Level Radio Frequency (LLRF)
 control library for the accelerator

Servers
- Control system dependent

Fig. 1. The design concept of the MicroTCA.4 User Tool Kit MTCA4U.

Fig. 2. High level architecture of MTCA4U devicessaccess library. Device Class interfacing with different back-ends through DeviceBackend Class.

be used to access control system middleware servers. A
LogicalNameMappingBackend that provides mapping of
logical register names onto real hardware registers is also
available. This evolution of the library to use devices beyond
MicroTCA.4 was the motivation to change of tool kit’s name
from MTCA4U to ChimeraTK[Control system and Hardware
Interface with Mapped and Extensible Register-based device
Abstraction Tool Kit]. The library can be easily extended by
adding a new back-end.

An important feature of the library is the register name
mapping of the NumericAddressedBackend. The I/O ad-
dress space can change over time due to firmware updates. To
make the software independent from these changes, an address

mapping is used where the registers can be accessed by name
rather than the address. This abstracts the register addressing
scheme and enable users to write clean and robust code. The
mapping file is created automatically with the board support
package and is shipped together with the firmware. The table
look up is minimized by creating accessor objects to cache the
register addresses and enhance the overall access performance.
The register name mapping is an important abstraction step
because some back-ends (like the DoocsBackend) do not
have numeric addresses.[3]

Fig. 3. The Qt Hardware Monitor makes the functionality of the device access library available in a graphical user interface.

V. THE BACK-END FACTORY

The C++ API provides an easy way to add new back-ends
using a plug-in mechanism. It allows the new back-ends to be
added at link time or at run-time. This way external plug-ins
can be added whenever they are required, without needing to
compile them together with the core library. Work is being
done to provide a configuration file where shared objects can
be defined, they are loaded at the runtime without having to
recompile the existing binaries.

VI. GRAPHICAL USER INTERFACE

The API comes equipped with a graphical user interface tool
called QtHardMon (Qt Hardware Monitor). Each back-end
provides a list of available registers. For numerical addressed
back-ends the mapping file which is shipped together with
the firmware contains this information. Using QtHardMon,
registers and their properties can be listed and the user can
read from or write to the registers and modify their contents.
This tool is typically used to debug and prototype by accessing
the devices without having to write any code.

VII. LANGUAGE BINDINGS

For quick and easy access to devices MTCA4U includes
Python and Matlab binding as well as a command line tool.
These bindings allows easy monitoring, configuration, testing
and evaluation of the devices. It also provides a starting point
to create special tool-sets, such as automated scripts.

VIII. CONTROL SYSTEM ADAPTER

Creating control algorithms is a complex and a tedious
job which requires lots of time and energy. Different control
system middle-wares provide different sets of features. Most of
the time an application is strongly coupled to a control system.
In order to re-use existing complex algorithms MTCA4U pro-
vides an adapter layer to write the control applications. When

an application is written against the adapter rather then the
concrete control system middle-ware it can be easily integrated
into different control systems. The decoupling also removes
the dependency on control system locks, which facilitates the
implementation of real-time capable controls. A more detailed
description of the control system adapter can be found in [5].

IX. VIRTUAL LAB FRAMEWORK

In addition to the device access library and the control
system adapter, the C++ API provides a framework called
’VirtualLab’ to test the software and help creating software
simulations. The main focus is to understand the behavior of
different components of the software when combined together.
The VirtualLab provides signal sources and sinks to connect
different components and a virtual timer to avoid situations
like race conditions in multi-threaded applications. This frame-
work ensures quality control for the software developers
working with ChimeraTK and helps writing reliable and robust
software. A more detailed description of the ChimeraTK
virtual lab can be found in [6].

X. CONCLUSION

The DESY MicroTCA.4 User Tool Kit MTCA4U recently
renamed to ChimeraTK, is an open source library published
under the GNU Lesser General Public License and GNU Gen-
eral Public License. A robust C++ API provides a convenient
way to write new software for hardware access. It has become
flexible and universal and is not limited to MircoTCA.4
anymore. It comes with many different built-in back-ends to
access PCI Express and ReboT devices or control system
middle-ware. A plug-in mechanism allows to add new back-
ends in the library itself or at run time. Rich features like
register name mapping makes the life easier for new device
back-end implementations by allowing it to re-use the API
functionality. The library also includes a set of tools designed

to access the register based devices without having to write
much code and comes with language bindings for Python
and Matlab. A command line based tool as well as graphical
user interface tool are included which allow quick prototyping
and testing. The control system adapter provides a way to
write control applications that could be used across all kinds
of control systems. This allows a wider field of application
for software written using MTCA4U/ChimeraTK. A testing
framework VirtualLab comes with the tool kit. This ensures
software quality, reliable software development and testing.

REFERENCES

[1] PICMG, Telecommunications Computing Architecture, MicroTCA.0,
R1.0, 2006.

[2] PICMG, Enhancements for Rear I/O and Precision Timing, MicroTCA.4
R1.0, 2011/2012.

[3] DESY, ChimeraTK - The DESY MicroTCA.4 User Tool Kit, Git Reposi-
tory Available: https://github.com/ChimeraTK

[4] Qt, The Qt Project, Available http://qt-project.org/
[5] M. Killenberg et al., Integrating control applications into different con-

trol systems, These Proceedings, 20th Real Time Conference, Padua
Italy. 2016

[6] M. Hierholzer et al., Software tests and simulations for realtime ap-
plications based on virtual time, These Proceedings, 20th Real Time
Conference, Padua Italy. 2016

