
Integrating real-time control applications into
different control systems

Martin Killenberg, Martin Hierholzer, Christian Schmidt, Nadeem Shehzad, Sebastian Marsching,
Chris Paul Iatrou, Reinhard Steinbrück, Michael Kuntzsch, Jan Wychowaniak

Abstract—Porting complex device servers from one control
system to another is often a major effort due to the strong code
coupling of the business logic to middleware data structures.
Together with its partners from the Helmholtz Association and
from industry, DESY is developing a control system adapter as
part of the MTCA4U tool kit. It allows to write applications in a
control system independent way, while still being able to update
the process variables and react on control system triggers. Special
attention has been paid to make the implementation thread
safe and real-time capable, while still providing the required
abstraction and avoiding performance losses. We report on the
status of the project and the plans to implement new features.

I. INTRODUCTION

W ITH embedded systems becoming increasingly power-
ful, the algorithms in the devices which are accessed

via control systems are becoming more and more advanced.
Especially on MicroTCA[1] systems the hardware usually
features a powerful multi-core CPU with several GB of RAM.
The MicroTCA.4[2] extension brings trigger and clock lines,
as well as large rear transition modules which can be used for
demanding analogue control applications.

Many particle accelerators which are currently being built
are using or will use MicroTCA.4 for control of the radio
frequency (RF) in the accelerator, for instance FLASH[3] and
the European XFEL[4] hosted at DESY, Hamburg, ELBE[5]
at Helmholtz-Zentrum Dresden-Rossendorf, or FLUTE[6] at
KIT, Karlsruhe. The complex RF control applications shall be
reused across the different accelerators, while all the facilities
are using different control system middlewares. It turned out
that porting the software to a different middleware is a major
effort because the code is strongly coupled to the original mid-
dleware. This lead to the idea to have an adapter layer between
the device library, which implements the algorithms, and the

Manuscript received June 2, 2016. This work is supported by the Helmholtz
Validation Fund HVF-0016 “MTCA.4 for Industry”

M. Killenberg is with Deutsches Elektronen-Synchrotron,
Hamburg, 22607 Hamburg, Germany (corresponding author, e-mail:
martin.killenberg@desy.de)

N. Shehzad is with Deutsches Elektronen-Synchrotron, Hamburg, 22607
Hamburg, Germany (presenter, e-mail: nadeem.shehzad@desy.de)

M. Hierholzer, C. Schmidt are with Deutsches Elektronen-Synchrotron,
Hamburg, 22607 Hamburg, Germany

Sebastian Marsching is with aquenos GmbH, 76532 Baden-Baden, Ger-
many

C. P. Iatrou is with Technische Universität Dresden, 01062 Dresden,
Germany

R. Steinbrück, M. Kuntzsch are with Helmholtz-Zentrum Dresden
Rossendorf, 01314 Dresden, Germany

J. Wychowaniak is with Łódź University of Technology, 90-924 Łódź,
Poland

middleware, which provides the communication protocols and
integration into the facility’s control infrastructure.

Most of the middlewares use locking mechanisms to im-
plement thread safety, so the process variables cannot directly
be used in real-time applications. So in addition to abstracting
the actual middleware in use, the adapter should also allow
a real-time thread to access process variables in a lock-free
manner.

The control system adapter has been developed as part of
the MicroTCA.4 User Tool Kit (MTCA4U)[7], a collection
of libraries to facilitate the implementation of control appli-
cations. The libraries have intentionally been designed as a
universal tool kit. Their use is by no means limited to the
MicroTCA platform, and there are already applications which
use MTCA4U outside of this scope. Consequently MTCA4U
has recently been renamed to “Control system and Hardware
Interface with Mapped and Extensible Register-based device
Abstraction Tool Kit” (ChimeraTK)[8].

II. REQUIREMENTS

The main task of the control system adapter is to al-
low application code to access process variables which are
communicated to the control system independently from the
middleware. For this, the adapter has to use the functionality
which is provided by the middleware, like communication
protocols or the addressing scheme.

The part of code which is device and middleware dependent
has to be minimal, zero if possible. This type of code is
causing the huge workload when porting and maintaining
applications for multiple control systems. Abstraction is easy
to achieve if data is simply copied back and forth between two
domains, but this comes with a performance penalty. So an
additional requirement to the adapter is to avoid unnecessary
copying, especially of large data structures like arrays.

With the CPUs in embedded systems becoming more
powerful, device server applications do not only provide the
interface to the control system, but also implement control
loops in software. Thus the minimum requirement for the
control system adapter is thread safety, so that the control loop
can run in its own thread. Ideally, the loop is running in a real-
time thread. As already mentioned in the introduction, many
middlewares use locking to implement thread safety, so the
process variables provided by the middleware are not directly
usable in the real-time thread. Hence, the adapter should
provide a lock-free mechanism to access process variables,
which are then passed on to the middleware layer.



Adapter Variable Pair "VOLTAGE"

SenderReceiver Control System Variable
"VOLTAGE"Update

Use "VOLTAGE"
Update "TEMPERATURE"

Adapter Variable Pair "TEMPERATURE"

ReceiverSender
Update

Control System MiddlewareDevice Library

Control System Variable
"TEMPERATURE"

D
e
v
ic

e
 T

h
re

a
d

C
o
m

m
u

n
ica

tio
n

 T
h

re
a
d

Fig. 1. The update flow using the control system adapter.

Looking at different middlewares, and control system instal-
lations at different facilities, it turned out that there is a large
variety of naming schemes, which are partly incompatible. For
one device implementation to work in different environments
without modification, the adapter has to provide a mapping
layer which translates process variable names of the device
implementation into the names which are published to the
control system. As this mapping is used to configure the device
integration, it can also be used to configure control system
specific features which are not covered on the control system
independent part.

As a starting point and to check if the abstraction is working,
the adapter is tested with two middlewares: DOOCS[9] and
EPICS[10]. DOOCS (used at DESY for FLASH and the
European XFEL), has an object-oriented data model written
in C++. EPICS 3, one the most widely used middlewares
for particle accelerators and used at FLUTE, has a channel-
based C API. We intentionally used two conceptually different
middlewares, hoping that the abstraction needed to work with
these two should also allow other software to be used without
modifications in the design. In addition, an adapter for OPC-
UA[11] is under development. It is based on the open62541
OPC-UA stack[12].

III. DESIGN CONCEPT

The first implementation of the adapter focuses on process
variables. It provides data structures for scalars (8, 16 and 32
bit signed and unsigned integers, single and double precision
floating point), strings, and arrays of the numerical data types.
Each process variable is identified by a unique name which de-
scribes its function inside the device code (“TEMPERATURE”
for instance for a device with a temperature sensor). The name
does not contain information where the device is installed and
in which context it is used. That part depends on the control
system and the facility, and is added in the control system
specific part of the adapter, not in the device part.

The original idea to avoid copying, especially for large
arrays, was to have a single instance of the data. This would
be stored in a middleware dependent type, an instance which

always has to be there to work with the particular control
system. The adapter would provide a wrapper, which would
be used inside the business logic. But it turns out that this
approach is not viable. DOOCS and EPICS use locking to
implement thread safety, so the process variables are not real-
time capable. In addition, the two middlewares have different
locking schemes for their variables, and only the middleware
could know when it is safe to access the variables, but not the
middleware independent device part.

The solution is to have a middleware independent instance
on the device side which can be accessed at any time,
and the middleware variable on the other side, which can
have a middleware lock (Fig. 1). These variables have to be
synchronized, which means that the abstraction at this point
requires one copy which cannot be avoided.1 To avoid race
conditions and endless loops, it was decided to restrict process
variables to be unidirectional in the current implementation
(“control system to device” or “device to control system”).

"Filled Buffers" Queue

"Available Buffers" Queue

Sender Receiver

Buffers
0 1 2 3

1 0

2 3

(empty)

Fig. 2. For arrays a process variable pair with sender and receiver features
two lock-free queues and at least four pre-allocated buffers.

To allow real-time threads in the device library, the variable
on the device side has to be lock-free. To implement this,
the adapter’s process variable is always a sender-receiver pair
(Fig. 2), using lock-free queues for transfer. As dynamic
memory allocation is not allowed in a real-time thread, the

1A copy can be avoided if the middleware data type allows swapping of
the internal buffer with a std::vector like it is used by the control system
adapter.



mechanism is working with a pool of pre-allocated buffers
for arrays. Sender and receiver each hold the reference to one
buffer at all times, which allows the business logic to access
and modify the data at will, except while sending or receiving.
The data being transferred is always the reference to a buffer,
not the buffer itself, which avoids unnecessary copying of large
data structures.2

When receiving, the receiver will pop the head of the “filled
buffers” queue. If it could get (the reference to) a new buffer,
it will push the now outdated buffer to the “available buffers”
queue, so the sender can reuse it. In case there are no updated
buffers available, the receiver will hold on to the current buffer,
as it contains the most up-to-date information that is available
on the receiver side.

Before actually sending, the sender will pop the head of the
available buffers queue to be sure it has a new buffer which
it can fill after sending (at all times there must be at least one
buffer on each the sender and the receiver side). After that, the
buffer to be send is pushed to the “filled buffers” queue. Both
receiver and sender first pop the head of the queue where they
retrieve the next buffer, and then push the buffer which has
been processed for use by the other side. As this can happen at
the same time, it means there have to be at least four buffers.

In contrast to a triple buffer, which is a common scheme in
real-time applications, this approach does not require a dirty
flag for the buffer, and the receiver does not have to swap back
to keep the latest available buffer in case no updated buffer
is found. As a further advantage, the number of buffers can
simply be increased, allowing a longer queue in case there are
fluctuations on the receiver side, but it is fast enough to catch
up with a certain backlog.

"Filled Buffers" Queue

"Available Buffers" Queue

Sender Receiver

Buffers
0 1 2 3

3 0

2 1

(empty)

Fig. 3. If the queue of available buffers is empty, a further send call would
pop the head of the “filled buffers” queue to be overwritten (buffer index 1
in this picture) and perform the send operation (buffer index 3 goes to the
queue). Like this, the information in the queue can be updated, whether the
receiver is active or not.

If the receiver is too slow to process data at the rate at
which the sender is producing it, data will be lost. This cannot
be avoided. In our implementation with a fixed number of
buffers it means the “available buffers” queue is empty. In
a naive implementation, the sender would keep its current
buffer to overwrite it (buffer 3 in Fig. 3). However, it is not
a good solution to stop sending because this would result
in newer data being discarded in favor of older data that is

2For scalars copying the value is not more expensive than copying the
pointer. In this case the values are directly copied and no additional buffers
are needed.

already in the queue. If for instance the receiver was down
for several minutes, the information in the queue would be
several minutes old when it is received, while newer data has
been overwritten. Instead, the oldest information which has
not yet been received should be dropped. So in case no free
buffers are available, the sender will pop the head of the “filled
buffers” queue (buffer 1 in Fig. 3) to be overwritten, and send
buffer 3, which has just been filled. Like this, the data in the
queue is being updated even if the receiver is not active.

IV. CREATION OF A PROCESS VARIABLE

Not only the device business logic has to be independent
from the control system side, also the amount of device-
specific middleware code should be minimized. For this reason
the creation of process variables is automated as much as
possible in the adapter (Fig. 4). The device is calling the create
function of the adapter, giving the name and the direction
(“device to control system” or “control system to device”).
Depending on the direction, a sender or a receiver is returned
to the device side. The other partner of the process variable
pair is stored in a list. After all process variables have been
created by the device, the middleware calls a function which
creates the instances of the control system variables for all
process variables known to the adapter. This function does not
depend on the device logic, which improves the decoupling.
It is, however, part of the middleware specific part of the
adapter and looks different for each middleware. The level
of abstraction which can be achieved here may vary.

V. STATUS AND OUTLOOK

The current implementation of the control system adapter
provides process variables in a common, middleware indepen-
dent part, which is thread safe and real-time capable. A mid-
dleware specific, but device independent part has to be added
to the adapter for each target middleware. Implementations for
DOOCS and EPICS have been written and are ready to use
in an early version, an adapter for OPC-UA is currently being
implemented.

As “proof of concept”, some example devices with a couple
of scalars and arrays have been created and tested using
either DOOCS or EPICS, and have afterwards been ported to
the other middleware. This porting worked smoothly in both
directions. As expected, the device code itself did not have to
be modified. The amount of device-specific code is very small
on the control system side. The example devices are down to
three lines of device-dependent middleware code, for DOOCS
as well as for EPICS, independent from the number of process
variables.3

The next step to make the adapter useful for real life
applications is to implement the mapping which translates
device process variable names into the names which are shown
in the control system. As described above, this feature is
needed to integrate the device code with fixed process variable
names into the various facilities with different naming schemes
and conventions. This integration step is implemented on the

3The device configuration files for the control system have to be written in
addition.



Control System AdapterDevice Library

Middleware Specific Code

create("VOLTAGE", CS -> Dev)

create("TEMPERATURE", Dev -> CS)

ReceiveListener "TEMPERATURE"

Control System Middleware

Sender "TEMPERATURE"

List

Sender "VOLTAGE"

Receiver "TEMPERATURE"

registerAllProcessVariables()

loop over "List"

registerListener()

registerAllProcessVariables()

Receiver "VOLTAGE"

UpdateListener "VOLTAGE"

Control System Variable
"VOLTAGE"

Control System Variable
"TEMPERATURE"

Fig. 4. The creation of process variables is requested on the device side. The instantiation on the control system side is automated as much as possible
inside the adapter.

control system side, and each adapter implementation will
bring its own mapping scheme to accommodate the specifics
of the particular middleware.

An application often has additional requirements, like range
limits or histories. If the features are provided by the middle-
ware, these implementations should be used. If a feature is not
provided by the middleware, there are two possible solutions:
Either the feature is optional for the application to run, or
it is implemented in the control system adapter. An optional
features for instance is a server-side variable history. If the
middleware provides this feature, it can be implemented (like
in DOOCS). If the middleware does not provide it, the history
can be implemented on the client side or with special middle-
layer servers (like in EPICS 3).

An example for a feature which should be provided by the
control system adapter is a guaranteed range limit on process
variables which the application code can rely on. The feature
will be executed on the control system side to be able to use
the middleware implementation if provided. In case it is not
available from the middleware a default implementation from
the control system adapter will be used. Without such a default
implementation each feature would have to be implemented
for each target middleware, which does not scale and is not
maintainable. It is currently being discussed how the adapter
can be extended with a plug-in mechanism that allows the
definition of new features and fulfills these requirements.

Further features under consideration are engineering units,
alarms, configurable validators provided by the device side.

VI. CONCLUSIONS

The MTCA4U control system adapter4 provides an interface
to use process variables in a device library without introducing
a coupling to a particular control system middleware. The
implementation is lock free and transfers pre-allocated buffers
without copying. This enables the device logic to use process
variables in a real-time thread, even if the middleware in use is
not real-time capable. In addition it is efficient and brings the

4MTCA4U has recently been renamed to ChimeraTK

required abstraction to allow operation in middlewares with
different locking mechanisms.

The adapter consists of a common part, which implements
the decoupling, and a control system specific part, which
provides the particular middleware implementations. Adapters
for DOOCS and EPICS have been developed, a version for
OPC-UA is being implemented.

Currently the adapter is being extended with a name map-
ping to allow the integration into the naming scheme of the
control system. A plug-in mechanism will provide features like
limiters, engineering units and history. These improvements
will bring the control system adapter from a proof of concept
study to a tool for real life application.

All software is published under the GNU Lesser General
Public License or the GNU General Public License and is
available in the respective software repositories[13], [15], [14],
[16].



REFERENCES

[1] PICMG R©, Micro Telecommunications Computing Architecture, Mi-
croTCA.0 R1.0, 2006

[2] PICMG R©, MicroTCA R© Enhancements for Rear I/O and Precision
Timing, MicroTCA.4 R1.0, 2011/2012

[3] C. Schmidt et al., Real time control of RF fields using a MicroTCA.4
based LLRF system at FLASH, 19th IEEE Real-Time Conference, Nara,
Japan, 2014

[4] M. Altarelli et al., XFEL : The European X-Ray Free-Electron Laser :
Technical Design Report, DESY-2006-097, DESY, Hamburg, 2007

[5] F. Gabriel et. al., The Rossendorf radiation source ELBE and
its FEL projects, Nucl. Instr. Meth. B 161-163, 1143, 2000,
http://dx.doi.org/10.1016/S0168-583X(99)00909-X

[6] S. Marsching et al., Status of the FLUTE Control System, WPO013,
PCaPAC2014, Karlsruhe, Germany, 2014, http://www.jacow.org/

[7] N. Shehzad et al., Modular Software for MicroTCA.4 Based Control
Applications, These Proceedings, 20th IEEE Real Time Conference,
Padova, Italy, 2016

[8] ChimeraTK — Control system and Hardware Interface with
Mapped and Extensible Register-based device Abstraction Tool Kit,
https://github.com/ChimeraTK/

[9] The Distributed Object Oriented Control System (DOOCS),
http://doocs.desy.de/

[10] Experimental Physics and Industrial Control System (EPICS),
http://www.aps.anl.gov/epics/index.php

[11] OPC Unified Architecture - Part 1: Overview and
Concepts, IEC TR 62541-1:2010, 2010, available at
https://webstore.iec.ch/publication/7172

[12] open62541 — An open source and free C (C99) OPC UA stack licensed
under LGPL + static linking exception, http://open62541.org/

[13] ChimeraTK ControlSystemAdapter — An adapter layer which allows to
use control applications with different control system software environ-
ments, https://github.com/ChimeraTK/ControlSystemAdapter

[14] ControlSystemAdapter-DoocsAdapter — The DOOCS
implementation for the ControlSystemAdapter,
https://github.com/ChimeraTK/ControlSystemAdapter-DoocsAdapter

[15] MTCA4U EPICS Adapter, Subversion Repository,
http://oss.aquenos.com/svnroot/epics-mtca4u/

[16] ControlSystemAdapter-OPC-UA-Adapter — The OPC-
UA implementation for the ControlSystemAdapter,
https://github.com/ChimeraTK/ControlSystemAdapter-OPC-UA-
Adapter


