

Benchmarking message queue libraries and network
technologies to transport large data volume in

the ALICE O2 system

V. Chibante Barroso, U. Fuchs, A. Wegrzynek for the ALICE Collaboration

 Abstract–ALICE (A Large Ion Collider Experiment) is the
heavy-ion detector designed to study the physics of strongly
interacting matter and the quark-gluon plasma at the CERN LHC
(Large Hadron Collider).

ALICE has been successfully collecting physics data of Run 2
since spring 2015. In parallel, preparations for a major upgrade,
called O2 (Online-Offline) and scheduled for the Long Shutdown 2
in 2019-2020, are being made. One of the major requirements is the
capacity to transport data between so-called FLPs (First Level
Processors), equipped with readout cards, and the EPNs (Event
Processing Node), performing data aggregation, frame building
and partial reconstruction. It is foreseen to have 268 FLPs
dispatching data to 1500 EPNs with an average output of 20 Gb/s
each. In overall, the O2 processing system will operate at terabits
per second of throughput while handling millions of concurrent
connections. To meet these requirements, the software and
hardware layers of the new system need to be fully evaluated.

In order to achieve a high performance to cost ratio three
networking technologies (Ethernet, InfiniBand and Omni-Path)
were benchmarked on Intel and IBM platforms.

The core of the new transport layer will be based on a message
queue library that supports push-pull and request-reply
communication patterns and multipart messages. ZeroMQ and
nanomsg are being evaluated as candidates and were tested in
detail over the selected network technologies.

This paper describes the benchmark programs and setups that
were used during the tests, the significance of tuned kernel
parameters, the configuration of network driver and the tuning of
multi-core, multi-CPU, and NUMA (Non-Uniform Memory Access)
architecture. It presents, compares and comments the final results.
Eventually, it indicates the most efficient network technology and
message queue library pair and provides an evaluation of the
needed CPU and memory resources to handle foreseen traffic.

I. INTRODUCTION

A. The ALICE Experiment
LICE (A Large Ion Collider Experiment) [1] is the heavy-
ion detector designed to study the physics of strongly

interacting matter and the quark-gluon plasma at the CERN
Large Hadron Collider (LHC). ALICE consists of a central
barrel and a forward muon spectrometer, allowing for a
comprehensive study of hadrons, electrons, muons and
photons produced in the collisions of heavy ion. The ALICE

V. Chibante Barroso, U. Fuchs and A. Wegrzynek are with CERN –

European Organization for Nuclear Research, Genève 23, CH-1211,
Switzerland

A. Wegrzynek is with Warsaw University of Technology, Faculty of
Physics, Koszykowa 75, 00-662 Warsaw, Poland

collaboration also has an ambitious physics program for
proton-proton and proton-ion collisions.

After a successful Run 1 ALICE has been taking data of
Run 2 since the beginning of 2015. In the end of 2018 the
LHC will enter a consolidation phase – Long Shutdown 2. At
that time ALICE will start its upgrade to fully exploit the
increase in luminosity.

The upgrade foresees a complete replacement of the current
computing systems (Data Acquisition, High-Level Trigger [2]
and Offline) by a single, common O2 (Online-Offline) system.

B. The ALICE O2 system
The ALICE O2 computing system [3] will allow to record

Pb-Pb collision at 50 kHz rate. Some detectors will be read out
continuously, without physics triggers. Instead of rejecting
events O2 will compress data by online calibration and partial
reconstruction.

The first part of this process will be done in dedicated
FPGA cards that are supplied with raw data from detectors.
The cards will perform baseline correction, zero suppression,
cluster finding and inject the data into FLP’s (First Level
Processors) memory to create a sub-timeframe. Then, the data
will be distributed over EPNs (Event Processing Node) for
aggregation and additional compression.

The O2 facility will consist of 268 FLPs and 1500 EPNs.
Each FLPs will be logically connected to each EPN through a
high throughput network. The O2 farm will receive data from
detectors at 28.8 Tb/s, which after processing will be reduced
to 720 Gb/s.

II. MOTIVATION
Transferring and processing Tb/s of data inside the O2

system is a challenge for the network and computing
resources. Assuming a throughput of 40 Gb/s the distance
between Ethernet frames is very small – 300 ns. During that
time the Linux kernel has to go through the whole TCP/IP
stack and deliver the data to user space which consumes a
large amount of computing resources. This work aims at
estimating the CPU needs for data transport inside the O2
system.

III. PERFORMANCE TUNING
The following improvements were implemented to increase

network throughput per CPU core:

A

978-1-5090-2014-0/16/$31.00 ©2016 IEEE

• Increased MTU (Maximum Transmission Unit) – to
decrease distance between Ethernet frames.

• Increased buffers sizes – increased size of TCP and IP
buffers to avoid fluctuation and packet losses.

• Enabled TSO (TCP Segmentation Offloading) [4] –
offloads CPU from data segmentation; the network
card chops the stream of data into number of needed
segments, the process is done in the device’s hardware
and works only on the sender side (no support on the
receving side), TSO is widely supported by Linux
starting from kernel 2.6.

• NUMA tuning – in multi-CPU and multi-core era its
paramount to configure CPU affinity and IRQs of the
network card properly; the CPU memory should be
used to avoid inter-CPU bus transfers.

• Intel DDIO [5] – allows network adapters to
communicate directly with the processor's cache,
reducing transfers to the main memory and therefore
lowering the latency; cache sizes in modern CPUs are
large enough (20MB) and can be shared among other
cores. DDIO is supported by Intel Xeon E5 and E7 v2
processor families.

IV. NETWORK TECHNOLOGIES
The average outgoing traffic from a single FLP is estimated

to be 20 Gb/s and incoming traffic to a single EPN to be less
than 10 Gb/s. Therefore, EPNs can be equipped with standard
10 Gb/s cards, but FLPs need a more effective solution. The
list of chosen network candidates is the following:

• 40 Gigabit Ethernet (40 GbE) – widely used, next
version of network standard also optimized for shorter
distances [6].

• InfniBand (IB) FDR – 56 Gb/s; dedicated for
interconnecting computers at high throughput and low
latency, especially in HPC (High-performance
computing) systems.

• Omni-Path (OPA) [7] – 100 Gb/s; Intel's interconnect
compatible with InfiniBand, it outstands with fabric
integrated into CPU; end-to-end solution is provided:
switches, software stack, fabric interface.

V. METHODOLOGY
The measurements, described in this paper were performed

by connecting a single FLP and EPN through a switch. This
allows to test how hardware and software deal with large
traffic, examine stability and performance, characterize data
flow and produce input data for simulations. Further tests with
more advanced architecture are ongoing – see Future Work
section.

A. Test Setups

Four hardware set-ups, based on Intel and IBM platforms,
were used – Table I.

Each set-up consists of two identical servers equipped with
the same CPU and network card, one acting as FLP and the
other as EPN.

TABLE I. TEST SETUPS

 Setup name Network Network adapter CPU
 Intel/GbE 40 GbE Chelsio T580 Intel E5-2690
 Intel/IB IB FDR Mellanox MT27500 Intel E5-2690
 Intel/OPA OPA - Intel E5-2680v4
 IBM/IB IB FDR Mellanox MT4115 IBM P8 2822LC

B. Configuration
By default, kernel available in current versions of Linux

distributions is optimized for throughputs lower than 10 Gb/s.
Therefore, to cope with the large traffic, several tweaks were
deployed:

• irqbalance service, distributing interrupts over multiple
CPUs, was turned off as it’s more efficient to keep
IRQs at the same NUMA node. Therefore, manual
configuration of IRQs and CPU affinity was made.

• Network adapter and its interrupts were handled by the
same CPU. High number of interrupts may kill the
performance of the application running in the user
space, therefore they were handled by separated,
dedicated core.

• Benchmark application was pinned to chosen core of
the same NUMA node. Such configuration minimizes
usage of the inter-processors interconnect.

Further tuning concerns network stack buffers and
parameters – see Table II.

TABLE II. NETWORK STACK BUFFERS AND PARAMETERS

 Parameter name Value
 TCP recv buffer 4096 87380 16777216
 TCP send buffer 4096 87380 16777216
 Socket backlog 250000
 Maximum Transmission Unit 9000
 Transmit queue length 50000

C. Benchmarks
The benchmark simulates data transmission between FLP

and EPN. On the FLP side it allocates a large fragment of
memory and fills it with dummy events of a given size. Then it
indefinitely iterates over these events and pushes them to the
EPN. The EPN receives, unpacks data and immediately
discard it. Four benchmarks were prepared based on the
following libraries:

• ZeroMQ – message-based library supporting a large
number of socket patters that help to create complex,
distributed systems;

• nanomsg – fork of ZeroMQ with ability to plug custom
transports, improved threading model and state
machine [8];

• asio – asynchronous, low level I/O library;
• FairMQ – high level transport framework with own

state machine and ability to work on top of lower level
network library such as ZeroMQ and nanomsg;

978-1-5090-2014-0/16/$31.00 ©2016 IEEE 978-1-5090-2014-0/16/$31.00 ©2016 IEEE

• O2 – development version of the O2 framework that
uses FairMQ.

All mentioned libraries require TCP/IP which natively is
not supported neither by IB nor by OPA. There are several
ways to provide this functionality:

• SDP (Socket Direct Protocol) – automatically converts
TCP so it can run smoothly over IB. It was successfully
configured on CentOS 7 and tested with iperf [10] tool.
Unfortunately, SDP is not compatible with ZeroMQ.

• IPoIB – implementation of full TCP/IP stack for IB.
• IPoFabric – the same as IPoIB but applies to OPA.
It is worth to mention that there is another solution that

supports all mentioned fabric technologies – libfabric
framework. Libfabric is outside the scope of this paper but it is
foreseen to include it in future tests.

D. Tools
To compare the test setups and network libraries, a selected

number of parameters were monitored. Table II lists the tools
that were used to acquire them.

TABLE II. TOOLS

 Tool name Usage
 nload Network throughput monitoring
 Intel PCM [9] Memory throughput monitoring
 sysstat CPU usage and IRQs per second
 numactrl Controls NUMA policy
 ethtool Changes network device settings
 oprofile Software profiler

A test utility that launches benchmarks on FLPs and EPNs
and collects the output of the monitoring tools was developed,
allowing measurements to be done almost automatically.

VI. RESULTS
The results are presented in plots representing: utilization of

the CPU core that was handling benchmark application on
receiving/transmitting sides and network throughput, both as a
function of block size. The range of block sizes was chosen
based on information provided by detector teams. The most
significant value is 50 MB that corresponds to a detector
contributing to 97% of the total traffic.

A. Intel/GbE
Figure 1 shows network throughput as a function of block

size for 40 GbE network on Intel platform. Unanticipated
behavior of nanomsg can be observed: Its throughput goes
down to almost 0 for block sizes larger that 1MB (the exact
value is 1048576B). It is caused by internal limitation of the
library. The issues was reported to developers and left without
response [11].

Fig. 1. Network throughput as a function of block size - 40 GbE on Intel
platform.

Fig. 2. Memory throughput as a function of block size for ZeroMQ
benchmark – 40 GbE on Intel platform

Fig. 3. CPU’s core usage as a function of block size on the receiving side
(EPN) – 40 GbE on Intel platform

The other unexpected behavior is the throughput decrease
for block sizes larger than 25 MB for all benchmarks except
asio. It is mainly caused by DDIO which is less efficient for
bigger blocks. Increased traffic through the main memory on
the EPN side is observed – see Figure 2 that shows memory

0

10

20

30

40
ZeroMQ nanomsg asio FairMQ O2

0

2

4

6

8

Tx (Total) Tx (Read) Tx (Write)
Rx (Total) Rx (Read) Rx (Write)

0

20

40

60

80

100

ZeroMQ nanomsg asio

FairMQ O2

M
em

or
y

th
ro

ug
hp

ut
 [G

B/
s]

1K 10K 100K 1M 10M 50M
Block size [B]

1K 10K 100K 1M 10M 50M
Block size [B]

1K 10K 100K 1M 10M 50M
Block size [B]

CP
U

 u
sa

ge
 [%

]
N

et
w

or
k

th
ro

ug
hp

ut
 [G

b/
s]

throughput as a function of block size for the ZeroMQ
benchmark. This also causes higher CPU utilization due to
data copy into main memory – see Figure 3. On the FLP side
we observed corresponding drop in CPU utilization - see
Figure 4.

Fig. 4. CPU’s core usage as a function of block size on the transmitting side
(FLP) – 40 GbE on Intel platform.

Fig. 5. No tuning and single core cases as a function of block size for
ZeroMQ benchamrk – 40 GbE on Intel platform

Figure 5 presents the following additional cases that were

measured only for ZeroMQ benchmark:
• No tuning – default sizes of network buffers, but IRQs

handled by second core,
• Single core – in addition to “No tuning” case IRQs and

the benchmark application are handled by the same
CPU core,

• Tuned – original case as on Figure 1.
It can be seen that tuning buffers can slightly increase the

performance. For such high transfer rates there are thousands
of network’s device IRQs per second. For each invoked IRQ,
the kernel stops program execution and switches the context to
process it, what significantly lowers the throughput.

B. Intel/IB
Figure 6 presents network throughput as a function of block

size for IB with IPoIB extension on Intel platform. As for 40

GbE the same unexpected behavior for messages larger than
25 MB occurs. In addition, a large overhead due to IPoIB is
observed. The measured throughput is limited to 25 Gb/s out
of 56 Gb/s of available bandwidth.

Fig. 6. Network throughput as a function of block size – IPoIB (IB FDR) on
Intel platform.

C. Intel/OPA
Figure 7 presents network throughput as a function of block

size for OPA fabric with IPoFabric enabled. As for other Intel
based setups the issue of decreasing throughput for messages
larger then 25MB can be observed. The overhead of IPoFabric
is even larger than for IB (only 37.5 Gb/s out of available 100
Gb/s).

Fig. 7. Network throughput as a function of block size – IPoFabric (OPA) on
Intel platform.

D. IBM/IPoIB
Figure 8 shows network throughput as a function of block

size for IB network with IPoIB running on IBM platform. The
throughput is constant after reaching the maximum value
limited by IPoIB. The results are better comparing to the Intel
based solution thanks to the ConnectX-4 network controller of
the newest Mellanox card.

0

20

40

60

80

100

ZeroMQ nanomsg asio FairMQ O2

0

10

20

30

40
No tuning Single core Tuned

0

10

20

30

40

50

ZeroMQ nanomsg asio FairMQ O2

0

20

40

60

80

100 asio FairMQ O2

1K 10K 100K 1M 10M 50M
Block size [B]

N
et

w
or

k
th

ro
ug

hp
ut

 [G
b/

s]

N
et

w
or

k
th

ro
ug

hp
ut

 [G
b/

s]

1K 10K 100K 1M 10M 50M
Block size [B]

N
et

w
or

k
th

ro
ug

hp
ut

 [G
b/

s]

1K 10K 100K 1M 10M 50M
Block size [B]

CP
U

 u
sa

ge
 [%

]

1K 10K 100K 1M 10M 50M
Block size [B]

Fig. 8. Network throughput as a function of block size – IPoIB (IB FDR) on
IBM platform.

VII. CONCLUSION
Ethernet with its long-serving TCP/IP stack reached its

maximum speed. In this case single core of the modern CPU is
enough to transport needed traffic from FLP to EPN.

The solutions not supporting TCP/IP natively such as IB
and OPA have the large overhead. IPoIB and IPoFabric use
less than half of the available bandwidth. IPoIB and IPoFabric
running on Intel platform require two cores of the CPU and
IPoIB on IBM platform singe core to transport given traffic.

The accelerating mechanisms such as TSO and DDIO
improves network throughput while running at high CPU load.

Tuning network buffers and parameters, setting up IRQ and
NUMA correctly allows to utilize the potential performance
from the hardware.

VIII. FUTURE WORK
The results presented in this paper refer to single sender and

receiver architecture. The final setup is more complex,
therefore further test will be performed starting from a single
FLP dispatching data to multiple EPNs and finishing with N
FLPs to M EPNs. This will allow to evaluate how the system
behaves in terms of load balancing and scalability when
handling thousands of concurrent connections.

Another point of improvement is the utilization of the
bandwidth of IB and OPA. Using alternative solution to IPoIB
and IPoFabric may increase the throughput. One example that
will be tested is libfabric that can run over IB, OPA and
Ethernet.

REFERENCES
[1] ALICE Collaboration, “The ALICE experiment at the CERN LHC”,

2008 JINST 3 S08002, 2008.
[2] ALICE Collaboration, “ALICE technical design report of the trigger,

data acquisition, high level trigger, and control system”, CERNLHCC-
2003-062, 2004.

[3] ALICE Collaboration, “Technical Design Report for the Upgrade of the
Online–Offline Computing System”, CERN-LHCC-2015-006, 2015.

[4] Chelsio Communications, “Chelsio T5/T4 Unified Wire for Linux”,
2015.

[5] Intel Corporation, “Intel Data Direct I/O Technology Overview”, 2012,
unpublished.

[6] John D’Ambrosia, David Law, Mark Nowell, “40 Gigabit Ethernet and
100 Gigabit Ethernet Technologu Overview”, Ethernet Alliance, 2010.

[7] Mark S. Birrittella et al, “Intel Omni-Path Architecture”, IEEE 2015.
[8] Haikel Guemar, “Nanomsg: ZeroMQ done right”, 2006.
[9] Intel Performance Counter Monitor, https://software.intel.com/en-

us/articles/intel-performance-counter-monitor, accessed on May 2014.
[10] iperf3: A TCP, UDP, and SCTP network bandwidth measurement tool,

https://github.com/esnet/iperf, accessed on May 2016.
[11] Nanomsg GitHub issues, https://github.com/nanomsg/nanomsg/issues,

accessed on May 2016.

0

10

20

30

40

50

ZeroMQ nanomsg asio FairMQ O2
N

et
w

or
k

th
ro

ug
hp

ut
 [G

b/
s]

1K 10K 100K 1M 10M 50M
Block size [B]

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://github.com/esnet/iperf

	I. INTRODUCTION
	A. The ALICE Experiment
	B. The ALICE O2 system

	II. Motivation
	III. Performance Tuning
	IV. Network Technologies
	V. Methodology
	A. Test Setups
	B. Configuration
	C. Benchmarks
	D. Tools

	VI. Results
	A. Intel/GbE
	B. Intel/IB
	C. Intel/OPA
	D. IBM/IPoIB

	VII. Conclusion
	VIII. Future Work
	References

