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Motivation for the Study of Dark Matter

Visible matter: Only a small
fraction of the universe
Dark Matter: Massive,
invisible component with no
interaction with light except
gravity.

Figure: Matter Distribution in
Universe (https://xkcd.com/2216/)



Observational Evidence for Dark Matter

Galaxy Rotation Curves: Faster-than-expected star orbits imply
more mass.

Figure: Rotation curve of spiral galaxy,a predicted one from distribution
of the visible matter (gray line). v(r) =

√
GM(r)/r (by Mario De Leo)



Observational Evidence for Dark Matter

Galaxy Rotation Curves:
Faster-than-expected star
orbits imply more mass.
Gravitational Lensing:
Bending of light around
invisible mass points to dark
matter.
Cosmic Microwave
Background: Fluctuations
match models that include
dark matter.

Figure: Frank O’Connell and Jim
McManus/ The New York Times

Other evidence of dark matter include: Galaxy Cluster Dynamics
and Structure Formation.



Cosmological Model

The prevailing cosmological model that describes the large-scale
structure and evolution of the universe.

Λ: Represents dark energy, a mysterious force driving the
universe’s accelerated expansion.
CDM (Cold Dark Matter): Accounts for the gravitational
effects of unseen matter that doesn’t interact with light i.e.
Dark Matter.
↪→ Non-Baryonic
↪→ Collisionless



Problems with Cold Dark Matter (CDM)

ΛCDM able to describe the universe at large scale, even if some
issues remain open...

On large scales, the ΛCDM model excellently describes cosmic
phenomena like the CMB and structure formation.

On small scales, such as in the Local Group, puzzles like the
”core-cusp” problem arise, where dwarf galaxies(∼ 1000 to
10,000 lyrs) show less dark matter in their cores than
predicted.

There are problems with the ΛCDM model predictions on small
scales core-cusp problem, the too big to fail and missing satellites.



Core-Cusp Problem
Core-Cusp Problem: CDM predicts a ’cuspy’ dark matter
distribution in the centers of galaxies (NFW profile Navarro, Frenk,
White), where the density sharply increases, but observations show
a flatter ’cored’ distribution.

ρNFW (r) = ρs/((r/rs)(1 + r/rs)2)

Figure: Left: Observed rotation curve of dwarf galaxy DDO 154 (black
data points) compared to models with an NFW profile for rs ≈ 3.4kpc
and ρs ≈ 1.5 × 107M⊙/kpc3 (Tulin & Yu (2017))



Self-interacting Dark Matter (SIDM)

The challenges and discrepancies at small scales in the ΛCDM
model, such as the cusp-core problem etc have prompted the
exploration of alternative dark matter models.

What is SIDM?
Self-Interacting Dark Matter (SIDM): A proposed form of dark
matter where particles interact with each other through forces
other than gravity, where collisions and scatterings between DM
particles are allowed.

Rscat = σvrelρdm
m

For dwarf galaxy we want at least one scattering per particle over
10 Gyr



Self-interacting Dark Matter (SIDM)

SIDM yields a cored density distribution as favoured by
observations.

Figure: Elbert et al.

Given this, it is very well possible that the nature of DM is far
richer and more complex than what the CDM model assumes.



N-body simulations

Figure: Randall Munroe, xkcd

https://xkcd.com/


N-body simulations

N-body simulations are computational methods used to study
the dynamics of systems with many interacting particles, such
as galaxies, galaxy clusters, or the universe’s large-scale
structure.
They simulate the gravitational interactions between a large
number of particles (∼ 109) , representing dark matter and
baryonic matter, to model the formation and evolution of
cosmic structures in a ”cosmological box”



Simulations

Figure: Visual representations of some selected recent structure and
galaxy formation simulations. (vogelsberger2019)



Complexity of N-body Simulations

Simulating both DM and BM is highly resource-intensive,
often requiring millions of CPU hours on supercomputers.

Due to these demands, most simulations prioritize the simpler
CDM model, limiting the exploration of more complex dark
matter models.

While SIDM offers potential solutions to small-scale structure
problems, its inclusion in simulations further increases
complexity and computational costs.



Smooth Particle Hydrodynamic

SPH is a computational method used to simulate fluids and gases:

↪→ each particle carrying properties like mass, velocity, and
energy.

↪→ particle represents a portion of the fluid or gas, interacting
with nearby particles to simulate the fluid’s behavior.



Euler Hydrodynamics Equations

∂ρ

∂t + v · ∇ρ + ρ∇ · v = 0

∂v
∂t + v · ∇v + ∇p

ρ
= g

∂e
∂t + v · ∇e + p

ρ
∇ · v = 0

Figure:
https://xkcd.com/2721/

+ heat conduction via Fourier’s law and Equation State for
monatomic ideal gas



SPHerical Method

SPHerical assumes
spherical symmetry:
↪→ Problem reduces from 3D

to 1D
Concentric Shells:
↪→ Instead of simulating

individual particles in a
3D space, the particles
can be grouped into
concentric spherical shells.

↪→ Each shell represents a
layer of particles at a
specific distance from the
center of the sphere.



Smoothing Kernel

Mathematical function, W (r, r′, h) used in SPH to interpolate and
smooth physical quantities like density, pressure, and velocity over
a set of particles.

W is Maximum at r = r′

Only depends on r and
W (r, r′, h) ≥ 0 for all r , h
Continuous up to second
derivatives everywhere
Approximates a Dirac delta
function in the limit
lim
h→0

W (r, r′, h) = δ3(r)
Figure: Truong et al.



Re-driving Euler Hydrodynamics Equations

Fluid is broken down into discrete units called ”particles”, which
travel along with the overall flow. We define an arbitrary quantity
of fluid as follows

A(r) =
∑

j

mj
ρj

AjW (r , rj , h)

For example, ”smoothed” density, ρ is

ρ(r) =
∑

j
mjW (r , rj , h)



Re-driving Euler Hydrodynamics Equations

This transforms Euler equations: SPH equations of motion for
spherically-symmetric, self-gravitating, conducting fluid with
variable smoothing length

dρi
dt = 1

Ωi

∑
j

mj

(
vi

∂W (ri , rj , hi)
∂ri

+ vj
∂W (ri , rj , hi)

∂rj

)
dei
dt = Pi

Ωiρ2
i

∑
j

mj

(
vi

∂W (ri , rj , h)
∂ri

+ vj
∂W (ri , rj , hi)

∂rj

)
dvi
dt = −GMi

r2
i

−
∑

j
mj

(
Pi

Ωiρ2
i

∂W (ri , rj , hi)
∂ri

+ Pj
Ωjρ2

j

∂W (rj , ri , hj)
∂ri

)

where Ωj = 1 − 1
3

hj
ρj

∑
k

mk
∂W (rj , rk , hj)

∂hj



Results Of SPHerical

Figure: Comparisons vs previous results from Essig et al (2019);
Nishikawa et al (2019) & Gad-Nasr et al (2023)



Conclusion

General Relitivistic corrections
↪→ SMBHs are formed often involve the direct collapse of dense

regions in the early universe. These processes occur under
extreme gravitational conditions where Newtonian gravity is
inadequate because the gravitational forces are immensely
strong and the density is very high.

Revise collapse condition in SPHerical





General Relativity and SPHerical



General Relativity Overview
The Einstein Field Equation is

Gµν − Λgµν = 8πG
c4 Tµν

Where

Gµν = Rµν − 1
2Rgµν

Tµν is the energy-momentum tensor
Conservation of momentum and energy requires

∇µT µν = 0

Together with the geodesic equation, EFE determines the path of the
particles and radiation through the geometry of the space-time caused by
the source terms.

d2xα

dτ 2 + Γα
βγ

dxβ

dτ

dxγ

dτ
= 0



Describes the density and flux of energy and momentum in
spacetime.

The component Tµν describes the flux of µ th component of
momentum vectors across the surface of constant xν . The

stress-energy tensor and metric tensor or both symmetric The

stress-energy tensor for an ideal fluid is

T µν = (ρ + ρu + P)UµUν + Pgµν

= ρω(U0)2vµvν + Pgµν



General Relativistic Corrections

Using the GR variational principle, Monaghan and Price (2001) derived
the SPH equations in general relativistic formalism.
The conserved density, momentum and energy are

ρ∗ =
√

−gρU0

pi = U0wgiµvµ

e = U0(wgiµvµv i − (1 + u)gµνvµvν
)

where g = det(gµν) (covariant metric) and enthalpy is defined
w = 1 + u + P

ρ where u, P and ρ are specific internal energy, pressure and
density in the rest frame of the fluid. The four-velocity components are :

Uµ = dxµ

dτ

and the coordinate velocities vµ are given by

vµ ≡ dxµ

dt = Uµ

U0 ,



where the normalization condition UµUµ = −1 gives

U0 ≡ dt
dτ

= 1
√−gµνvµvν

,

where relativistic units c = G = 1 and the metric signature (−, +, +, +)
is assumed.

dρ∗
a

dt = 1
Ωa

∑
b

mb
(
v i

a − v i
b
) ∂Wab (ha)

∂x i

dpa
i

dt = −
∑

b
mb

[√
−gaPa

Ωaρ∗2
a

∂Wab (ha)
∂x i +

√
−gbPb

Ωbρ∗2
b

∂Wab (hb)
∂x i

]
+ f a

i

dea
dt = −

∑
b

mb

[√
−gaPav i

b
Ωaρ∗2

a

∂Wab (ha)
∂x i +

√
−gbPbv i

a
Ωbρ∗2

b

∂Wab (hb)
∂x i

]
+ Λa

where we define

Ωa = 1 + 1
d

ha
ρ∗

a

∑
b

mb
∂Wab(ha)

∂ha



where the source term containing the derivative of the metric is
defined accordingly

fi =
√

−g
2ρ∗

(
T µν ∂gµν

∂x i

)
Λ = −

√
−g

2ρ∗

(
T µν ∂gνµ

∂t

)

In flat space-time these partial derivatives are zero and there is no
additional term.



Schwarzschild Metric

gµν =


−
(
1 − rs

r
)

0 0 0
0 1

(1− rs
r ) 0 0

0 0 r2 0
0 0 0 r2 sin2 θ



Simplest solution to EFE under time invariance and spherical
symmetry

Singularity at origin and rS

Infalling time is infinite



Tolman Oppenheimer Volkoff Equations

dm
dr = 4πr2ϵ

dP
dr = −(ϵ + P)m + 4πr3P

r(r − 2m)
dΦ
dr = − 1

ϵ + P
dP
dr

Can be integrated from r = 0 outwards, until P vanishes.

Boundary condition is

Φ(r = R) = 1
2 ln(1 − 2M

R )



The assumed equation of state for SIDM is chosen to be polytropic
P = (γad − 1)ρu where γad is the adiabatic index which is equal to
5
3 in the newtonian code. The internal energy u is related to the
gas temperature T through the ideal gas law

P = ρkBT
m

where m is the mass of the dark matter particle.
Therefore the specific enthalpy in the comoving coordinate would
be given by

ω = 1 + u + P
ρ

= 1 + u + 2
3u = 1 + 5

3u

The coefficients of the partial derivatives in fi and Λ becomes
√

−gT µν

2ρ∗ = 1
2 [ωU0vµvν + Pgµν

ρU0 ]



Computational Procedure

For the case of spherically symmetric shells with only possible
motion in radial direction, we note that the only non-zero vµ

components are v0 = U0

U0 = 1 and v1 ≡ v r . Another quantity in
the equations is U0 which for our simulation would be given by

U0 = 1√
−gtt − grr (v r )2

Also,

P
ρ∗ = P√

−gρU0 = 2
3

u√
−gU0



from which the sph equations turn into:

dρ∗
a

dt = 1
Ωa

∑
b

mb
(
v i

a − v i
b

) ∂Wab (ha)
∂x i

dpa
i

dt = −2
3
∑

b
mb

[ ua
Ωaρ∗

aU0
a

∂Wab (ha)
∂x i + ub

Ωbρ∗
bU0

b

∂Wab (hb)
∂x i

]
+ f a

i

dea
dt = −2

3
∑

b
mb

[
uav i

b
Ωaρ∗

aU0
a

∂Wab (ha)
∂x i + ubv i

a
Ωbρ∗

bU0
b

∂Wab (hb)
∂x i

]
+ Λa,

where

f a
i = 1

2[(1 + 5
3ua)U0

a vµvν + 2
3

uagµν
a

U0
a

] ∂gµν

∂x i

Λa = 1
2[(1 + 5

3ua)U0
a vµvν + 2

3
uagµν

a
U0

a
] ∂gµν

∂t



The basic variables are u, ρ∗ and vi . Knowing these allows for evolving
the variables.

Unlike the Newtonian case, the basic variables vi and u are not evolved
directly in GRSPH, rather their dependant functions pr and e. Therefore,
after each time step evolution one needs to use two of the equations to
solve for the two variables vi and u.

pr = U0 (1 + 5
3u)grr v r

e = U0 [(1 + 5
3u)grr (v r )2 − (1 + u)(gtt + grr (v r )2)]

The left hand side of these equations are the time evolved canonical
momentum and energy which are known. Solving the pr equation for v r

and substituting in e equation gives

e = p2
r

U0 (1 + 5
3 u) grr

− U0 (1 + u)(gtt + p2
r

grr (1 + 5
3 u)2 (U0)2 )

which can be solved numerically for u and obtain v r from it.
Knowing all the new time-step variables, the next time-step evolution is
possible.



Collapse of Dark Matter

Gravothermal arises due to the negative heat capacity of the
self-gravitating, self-interacting dark matter fluid.

We set further dynamical conditions on core collapse based on the
adiabatic index.

The system becomes unstable if the pressure-averaged adiabatic index
< γ > is less than the critical adiabatic index γcr , which is the
well-known 4

3 with some velocity dependant GR correction terms



Figure: M70 Gravothermal Collapse

⟨T ⟩ = −1
2

N∑
k=1

⟨Fk · rk⟩τ = n
2 ⟨Vtot⟩

⟨Etot⟩ = (n
2 + 1)⟨Vtot⟩



The critical adiabatic index is (Chandrasekhar 1964)

γcr ≡
4
3

+
1
36

∫ R

0
e3Φ+Λ

[
16p +

(
e2Λ − 1

)
(ρ + p)

](
e2Λ − 1

)
r2 dr∫ R

0
e3Φ+Λpr2 dr

+
4π

9

∫ R

0
e3(Φ+Λ)

[
8p +
(

e2Λ + 1
)

(ρ + p)
]

pr4 dr∫ R

0
e3Φ+Λpr2 dr

+
16π2

9

∫ R

0
e3Φ+5Λ(ρ + p)p2r6 dr∫ R

0
e3Φ+Λpr2 dr

and the pressure averaged adiabatic index is

⟨γ⟩ ≡
∫ R

0 e3Φ+Λγpr2 dr∫ R
0 e3Φ+Λpr2 dr

The condition of stability is

⟨γ⟩ > γcr

for generic spherically symmetric line element

ds2 = −e2Φ(r)c2dt2 + e2Λ(r)dr2 + r2 (dθ2 + sin2 θdϕ2)



For a monoatomic ideal gas, < γ > can be any number between 5
3 and

4
3 . The instability hardly occurs in Newtonian relativity at
ultra-relativistic regime where < γ >= 4

3

However in GR the value of γcr increases and instability can occur before
particles become ultra-relativistic.

Figure: γ vs 3D velocity dispersion (Feng, Yu, Zhong 2021)



Figure: Gamma (pressure averaged adiabatic index) vs 3D velocity
dispersion comparison [Maheen Hemani]

The boundary temperature doesn’t vary the results as much and we see a
similar trend at all different temperature (b) values.
This means using the velocity condition is good enough to initiate
collapse.



SPHINCS

Rosswog and Diener (2021) present a new methodology for
simulating self-gravitating general-relativistic fluids

Fluid is modelled by means of Lagrangian particles in the framework
of a GRSPH formulation, while the spacetime is evolved on a mesh
according to the BSSN formulation

Particles need from mesh: the metric gµν and the ”metric
acceleration terms” for the momentum and energy equations at the
particle locations

Mesh needs from particles: the energy-momentum tensor Tµν for
the source terms in BSSN



BSSN

EFE are highly nonlinear partial differential equations, extremely
challenging to solve, especially in dynamic and strong-field situations.

Traditional methods can lead to numerical instabilities, making it difficult
to obtain accurate and stable simulations.

The BSSN formalism was developed to overcome these challenges by
introducing a set of variables and equations that are more numerically
stable and better suited for long-term evolution in computational
simulations.



Outlook

3+1 formalism

Both mesh and particle method combined

Need for sophisticated interpolation algorithms and BSSN
formalism.

Spherical averaging of the SPH equation in SPHINCS

Apply the adiabatic condition for collapse (most likely through a
condition on energy density)
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