Neutron Stars

Sharon Morsink, Department of Physics

University of Alberta, Edmonton, Canada

EXPLORE 2023 Summer School, Friday September 1, 2023

Introduction to Neutron Stars

- Lecture 1 Introduction to neutron stars
 - Endpoints of stellar evolution: white dwarf stars, neutron stars, and black holes; hydrostatic equilibrium
 - Degenerate matter; applications to evolved stars and white dwarf stars; Chandrasekhar Limit
 - Concept of a neutron star; beta decay; neutrons, neutrinos, and other particles; Equation of state uncertainty; maximum mass
 - Birth of neutron stars in a supernova; proto-neutron stars and black holes
 - Binary neutron star mergers and r-process elements
- Lecture 2 Why neutron stars are ``cool"!
 - Neutron star cooling
 - Superfluidity and superconductivity
 - Spin and magnetic fields; spin-down and spin-up; glitches
 - General relativity and gravitational lensing
 - Neutron star zoo: pulsars, magnetars, central compact objects, etc

Why aren't all stars black holes?

- A normal star is in a balance between gravity and pressure called hydrostatic equilibrium.
- Nuclear fusion reactions in the core provide the heat and outward pressure that balance gravity.

What happens when there is no energy source for a star?

When there is no fuel for nuclear reactions there will be no heat generation in the star's core!

If there is no thermal pressure, the core will collapse inwards.

Adult Stars: The Main Sequence

Larger Mass \Rightarrow Larger Size \Rightarrow Higher Temperature \Rightarrow Brighter Light ... But Shorter Life

60 Mc. 106 Brighter 30 Mc pica 10^{4} **UMINOSITY (SOLAR UNITS)** MAIN SEQUENCE 10^{2} Sirius A 0.3 M_{sm} Sún 10-2 0.1 Ms Wolf 359 10-4 Dimmer 30,000 3,000 10.000 6.000 SURFACE TEMPERATURE (KELVIN) DECREASING HERTZSPRUNG RUSSELL (HR) DIAGRAM

Low Mass Stars: Mass < 8 M_{sun} At end of life expand into a "Planetary Nebula"

Images by Tom Owen

The Ring Nebula, M57

White Dwarf Star at centre of nebula Core of the dead star

Summer Triangle at the 2004 Rascal Star Party

© 2004 David Lee

Nebula = remains of the outer parts of the dead star

The Sirius Binary System Sirius A = Bright adult star; Sirius B = faint White Dwarf Star

What happens when a gas of fermions is compressed at low temperature?

- From Pauli exclusion principle no two fermions are in the same state.
- For typical inter-particle distance Δx Heisenberg uncertainty gives Fermi momentum to the particle of order $p \approx h/\Delta x$
- Fermi energy $E_F \approx p^2/m$
- The resulting pressure is known as Degeneracy Pressure which is larger than ideal gas pressure if $kT < E_F$

⇒At high density degeneracy pressure can dominate even at high temperatures!

White Dwarf Star

- Gas of ionized Carbon (and some O, Ne) and electrons
- Electrons have momentum from Heisenberg uncertainty and provide degeneracy pressure
- C ions move more slowly, and only provide a very small thermal pressure
- Electron degeneracy pressure can support a gas of ions and electrons against gravitational collapse "forever"

The Chandrasekhar Limit

 In 1930 Chandrasekhar realized that the equation for the electron velocity in a white dwarf star is fatally flawed

$$v = \frac{\hbar}{m\Delta x}$$

Einstein's Special Relativity limits White Dwarf Stars

• Einstein's Special Relativity tells us that electrons can't travel faster than light speed.

- But in order for a high mass white dwarf star to exist, ultra-high density and faster than light speeds are required.
- High mass stars can't end their lives as a white dwarf.
- High mass stars must end their life in a complete gravitational collapse!

Chandrasekhar's upper mass limit of 1.4 M_{sun} for White Dwarfs!

Type II Supernova= Core Collapse SN Collapse of a High Mass Star M > 8 M_{Sun}

The neutron

- A neutron has a mass that is slightly larger than the mass of a proton
- Isolated neutrons are unstable and decay with a half-life ~ 10 minutes through the beta decay reaction

$$n \to p + e^- + \bar{\nu}$$

• The inverse beta reaction is called "electron capture"

$$p + e^- \rightarrow n + \nu$$

• Electron capture can only take place if we can supply extra energy to the electrons larger than the mass difference:

$$\Delta E = (m_n - m_p - m_e)c^2 = 1.3 \text{MeV}$$

Critical Densities for a Star

- 10³ kg/m³ < ρ < 10⁶ kg/m³: electron degeneracy pressure can support a gas of ions and electrons against gravitational collapse (I.e. white dwarf stars, cores of some giants)
- ρ > 10⁶ kg/m³ : degenerate electrons have enough energy that electron capture $p + e^- \rightarrow n + \nu$

is favoured over beta decay. \Rightarrow Neutron-rich gas results

This sometimes called "Beta Blocking" and/or neutronization

Neutron Degenerate Pressure

- Neutrons have a mass close to 2000 times larger than an electron
- For non-relativistic degenerate matter: $v = \frac{\hbar}{m\Delta x}$
- A neutrons need to be closer together than electrons in order to achieve the same average speed!
- Neutron degeneracy requires MUCH higher densities!
- $\rho \approx 2 \times 10^{11} \text{ kg/m}^3$ = nuclear density at which the Fermi energy of a neutron is $E_F \approx 1 \text{ MeV}$

 \Rightarrow Neutron degeneracy can support a star if T < 10¹⁰ K

Typical Neutron Star Parameters

- Mass ≈ 1.5 M_☉
- Radius $\approx 10 \text{ km} \approx 10^{-5} \text{ R}_{\odot}$
- Surface Gravity: $GM/Rc^2 \approx 0.1 - 4/9$
- Escape Velocity: $v_{esc}^2 = 2GM/R$
- Maximum rotation rate \approx 1000 Hz (after setting v_{rot} = v_{esc})
- Escape velocity & rotational velocity can be a significant fraction c!

Type II Supernova

- Core shrinks
- Neutron star forms
- Explosion triggered when infalling gas smashes into the neutron star

Formation of a neutron star triggers a supernova explosion!

The Discovery of Neutron Stars

- November 28, 1967 Jocelyn Bell discovered radio pulses that repeated every second.
- Best explanation: the "pulsars" are rotating neutron stars
- The discovery of neutron stars made it seem more likely that black holes could exist.

Dame Jocelyn Bell Burnell receiving Honorary PhD, 2016, U Alberta Photo: Richard Siemens

How do Black Holes Form?

- Black holes are the result of total gravitational collapse
- Neutron stars have a maximum mass, similar to the Chandrasekhar mass limit for white dwarf stars.
- Upper mass limit is not known exactly.
- Maximum mass for a neutron star is somewhere between $2.2 M_{sun} 3.0 M_{sun}$
- The existence of a maximum neutron star mass suggests that black holes might be formed when extremely high mass stars die

Core Collapse Supernovae with Higher Mass Main Sequence Stars: M > 25 M_{sun}

- In some "weak" explosions, outer layers of gas can fall back onto the neutron star
- Neutron stars have a maximum mass near 3 M_{sun}
- The extra gas can destabilize the Neutron Star making it collapse inwards!

M > 25 M_{sun} (mass limit is uncertain)

- The collapsing Neutron Star forms a Black Hole!
- This process is called a "Fallback Supernova"

Higher Mass Main Sequence Stars: M > 40 M_{sun} (mass limit is uncertain)

- The collapsing giant fails to start an explosion, and directly forms a black hole
- We call this a "failed supernova"

Collapsing Giant Star

Black Hole

A Failed Supernova forming a Black Hole?

Image Credits: NASA

Collapse of a Rapidly Rotating Massive Star

- If the collapsing star is rapidly rotating, a disk of gas can form around the black hole
- This could produce a HYPER bright supernova called a Hypernova or a Collapsar!

Drawing Credit: NASA/Marshall Space Flight Center, after Baron (*Nature*, 395: 635, 1998).

Black Hole formed in a Gamma-Ray Burst?

- Maybe some black holes are born with a burst of gammarays?
- We often see bright bursts of gamma-rays.
- "Long Gamma-ray Bursts" may be the birth of black holes

Holy Cow?!?

- 18cow is an unusual supernova explosion seen in another galaxy in 2018
- The dying star had a mass around 80 M_{Sun}
- Speculation: this explosion might have produced a black hole!
- At the moment this is an unproved hypothesis

Pair Instability Supernova: Nothing left behind!

What about gold?

- Gold's most common isotope has 79 protons and 88 neutrons
- This is an example of an r-process element = "rapid neutron capture process"
- Supply lots of fast-moving neutrons to a nucleus with lots of protons
- Neutrons can be captured by the nucleus to make heavier isotopes
- If neutrons arrive more rapidly than they decay, then elements like gold can form

Binary NS-NS Mergers: Production of gravitational waves, gold, short gamma-ray bursts, black holes!

Computer simulations by L. Rezzolla and M. Koppitz

Summary of Part 1

- When main sequence stars die, they can produce one of the following remnants: a white dwarf, a neutron star, a black hole, or nothing at all!
- White dwarf stars are supported by electron degeneracy pressure
- Neutron stars are (at first approximation) supported by neutron degeneracy pressure
- Explosions are fun!

Neutron Stars: Part 2

- Neutron stars are more than just neutrons!
- A ball of pure neutrons would be unstable, since neutrons will seek the lower energy state and transform into protons, electrons, and anti-neutrinos (beta decay)
- The beta decay reaction releases energy, so this would be a neutron bomb!

Beta Equilibrium

• A neutron star is in beta equilibrium with beta decay and inverse beta decay occurring at the same rate

$$n \leftrightarrow p + e^- + \bar{\nu}$$

- In equilibrium there will always be some protons and electrons
- When these two reactions take place, neutrinos and antineutrinos are emitted, carrying away thermal energy
- Neutrinos cool down a neutron star after a supernova!

Supernova 1987a: Core Collapse SN in LMC

- 12 neutrinos were detected from this supernova by Kamiokande detector in Japan!
- This SN most likely formed a neutron star (no direct detection yet)
- 2002 Nobel prize to Masatoshi Koshiba (leader of Kamiokande detector)

Image by David Malin, AAO

Other Particles: example the muon

- Muon = "heavy electron" = μ^{-}
- Muon mass ~ 200 electron mass
- Normally muons decay into electrons:

$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$

- Inverse reaction producing muons can occur if degenerate electrons have enough energy!
- Normally we also have muons in a neutron star!
Flavour-Changing Reactions

- Quarks come in different "flavours"
- Regular matter is made up of up and down quarks
- Proton = up + up + down; Neutron = up + down + down
- Other flavours called "strange", "charm", "top", "bottom"
- The strange quark is like a heavy down quark
- At high densities some of the down quarks in a neutron can transform into a strange quark creating a heavy baryon called a Hyperon

Many possible compositions for a "neutron star"!

The neutron star interior

Possible Phase Diagram for Dense Matter

Equations of State vs Mass-Radius Curves

Measurements of M and R as probes of nuclear physics???

Mass Measurements: High mass can rule out an EOS!

Measurement of Shapiro Delay gives $M=2.0 M_{\odot}$ (Antoniadis+ Science 2013)

The strongest magnetic fields: Pulsars

1200 Teslas, University of Tokyo

10,000 – 10,000,000,000 Teslas

Neutron Star Zoo

- Pulsars pulsed radio emission from electrons magnetic funnels; pulsations from spin of neutron star
- ms pulsars pulsars with spin periods near 1 ms
- X-ray and/or gamma pulsars = pulsed x-ray or gamma ray emission along with radio
- Magnetars = highest magnetic field neutron stars
- Central Compact Object = neutron star found in a supernova remnant
- Many others if found in a binary system

Neutron Star Spin Down

- A non-axisymmetric spinning magnet emits magnetic dipole radiation
- All EM radiation carries away energy and angular momentum
- The radiation causes the neutron star's spin to slow down
- ``Magnetic Braking"

Neutron Star Spin Up

- When a neutron star is close to another star in a binary, gas can flow to the NS in an accretion disk.
- This gas will land on the NS adding mass and angular momentum!
- This causes the NS to spin faster!
- After accretion stops, the NS slowly loses angular momentum again.

Pulsar P-Pdot Diagram

Rotation in a Superfluid

- When a superfluid rotates, the rotation is confined to quantized flux tubes
- Changes in rotation rate require destroying or creating new vortices
- Difficult to change the spin rate of a rotating superfluid!

Superfluid Neutrons?

- In a neutron star, it is possible for neutrons to pair up, creating effective bosons
- These effective bosons could behave like a superfluid
- Similarly, protons can pair up, possibly creating a superconductor
- The superfluidity ``resists" the magnetic braking effect

Spin Glitches

- Magnetic braking slows down the NS crust
- The superfluid interior tends to keep its spin constant
- During a glitch, some of the superfluid's angular momentum is transferred to the crust, spinning up the crust briefly

Neutron Stars' gravity bends light!

Animation by Brock Moir (U of A undergrad), Sharon Morsink, Zaven Arzoumanian, NASA

NASA's NICER X-ray Telescope

NICER on the ISS is observing neutron stars and black holes!

How do you measure a star's radius?

 $\theta = 2R/d$

Dependence of Pulse Profiles on M/R

M/R = "compactness" affects how much of the star is visible due to light-bending; larger $M/R \rightarrow$ less modulation

Effect of Observer's Viewing Angle

30 deg from Spin Axis

90 deg from Spin Axis

Effect of Rotational Speed \propto R sini sin θ

v/c = 0.01 v/c = 0.1 v/c = 0.2

Anisotropic Emission

Beaming affects:

- Modulation: Normal beaming (A) gives higher pulsed fraction than antibeaming (C)
- timing asymmetries: peak emission occurs earlier for C than for A
- Pulse shape: double-peaks or flattened peaks possible with C

Anisotropy depends on the photon wavelength.

We require phase resolved spectroscopy!

A = Beamed towards the normal

B = Isotropic emission

C = Beamed towards the surface

Pulse Profile Modelling

- Forward problem: (Easy!)
 - Make assumptions about NS properties, spot geometry, emission spectrum & beaming
 - Relativistic raytracing (using Schwarzschild metric) to predict flux versus time in telescope
- Inverse problem: (Difficult!)
 - Observe pulse profile and infer the NS properties
 - NICER X-ray telescope

NICER Pulse profile data

Bogdanov et al, ApJL 2019

NICER Pulse profile data

Bogdanov et al, ApJL 2019

First Results on J0030

- No independent radio mass measurement
- Two independent analyses (crescents or ovals) led by Amsterdam (Riley+) and Maryland (Miller+)
- $M = 1.34^{+0.15}_{-0.16} M_{sun} R = 12.71^{+1.14}_{-1.19} km$ (Riley+)
- $M = 1.44^{+0.15}_{-0.14} M_{sun} R = 13.02^{+1.24}_{-1.06} km$ (Miller+)
- Similar observer inclinations, and spot locations
- Differences in M, R values show systematic errors coming from models

Inferred Spot Geometries

In both cases the hot spots are in the opposite hemisphere than the observer!!!! Not dipole-like!

Inferred Spot Geometries

From the observer's point of view the third Antarctic spot is barely seen, while the "horns" of the crescent aren't seen.

SUMMARY

- Neutron stars have extremely high densities at their cores
- They can exhibit many types of extreme physics:
 - Strange particles!
 - Ultra-strong magnetic fields!
 - Strong gravitational light-bending!
 - Superfluidity and superconductivity!
 - Maybe a place for dark matter to accumulate?
 - Almost any type of physics can be applied here!

Extra slides

Binary NS-NS Mergers

LIGO – The Laser Interferometric Gravitational Wave Observatory

GW170817 – LIGO's first observation of NS-NS merger Did merger produce NS or BH????

Neutron Star Radius' Role: Tidal deformation can "waste" orbital energy making inspiral evolve faster than for point particles Rough limits R < 14 (ish) km

Effect of Stellar Oblateness

Morsink, Leahy, Cadeau & Braga 2007 ApJ

Hot Spot Model for Accreting X-ray Pulsars

Inclination and emission angle

- θ = angle between the hotspot's centre and the spin axis
- i = angle between the observer and the spin axis (orbital and spin angular momenta aligned)
- α = angle between the photon's initial direction and the normal to the surface.
- Relative values of I and θ affect visibility, modulation and timing asymmetries.
- Independent of photon energy

Relating nuclear physics to space-time

Rotational Effect on Luminosity Radius

- An oblate star with the same equatorial radius as a spherical star has a smaller cross-sectional area A
- Flux ∝ A so assuming a sphere underestimates the equatorial radius of the star

Luminosity Radius vs "Real" Radius

Pure Blackbody: Baubock, Ozel, Psaltis, Morsink, ApJ 2015

Assuming a spherical star could lead to underestimating the radius by 3-5%

Generalization to more realistic Atmosphere by UofA MSc Student Charlee Amason