ECOs from the dark DM cores

Presenters: Jingfeng Pan, Katie Tamura, Udhay Dogra Tutors: Laura Sagunski, Robin Diedrichs

Outlines

1. Introduction

- Gravitational waves from merging black holes and neutron stars (three phases of the merger)
- Mention LIGO detections
- Peaks in the power spectral density (PSD) for a neutron star merger
- Neutron stars with dark matter cores

2. Theoretical model

- Toy model from Ellis et. al
- Derivation of the PSD:
 - i. Equations of motion
 - ii. Quadrupole moment
- Plots for the Gravitational wave signal
- Plot for the PSD

3. Numerical results

- Our plots h+ and hx in comparison to Ellis et al.
- Our plots for the PSD for different values of the free parameters

4. Conclusions and outlook

- Summary
- Open problems: Cannot reproduce oscillations in the PSD that Ellis et al. have
- Realistic values for the free parameters, e.g., the dark matter mass fraction (see https://arxiv.org/abs/2303.04089)

1. Introduction

Stages of Binary BH/NS Mergers

Credit :(Top) Kip Thorne; (Bottom) B. P. Abbott et al. [8]; adapted by APS/Carin Cain https://physics.aps.org/articles/v16/29

LIGO Detections

Figure 2 A representation of the strain-data as a time-frequency plot (taken from [1]), where the increase in signal frequency ("chirp") can be traced over time.

Credit: Abbot et al. [1]

PSD for a NS Post-Merger

FIG. 3. PSD $2\tilde{h}(f)f^{1/2}$ relative to the binary APR4-q10-M1375. Indicated with a black line is the full PSD, while the green line shows the PSD after the application of a Tukey window, and the blue line the PSD filtered with a high-pass Butterworth filter. Finally, shown in red is the fit made to capture the peak frequencies f_1 and f_2 .

Credit: Takami et al. [2]

Adding Dark Matter Cores

Credit: Ellis et al. [2]

2. Theoretical Model

Toy Model

Original Toy Model

FIG. 17. Cartoon of the mechanical toy model composed of a disk of mass M and radius R rotating at frequency $\Omega(t)$. Two spheres, each of mass m/2 are connected to the disk, but are also free to oscillate via a spring that connects them.

Takami et. al [2]

Extended Toy Model

FIG. 1. A schematic diagram of the mechanical model adopted to investigate the possible effects of DM components on the GW signal emitted by NS-NS mergers. The DM cores (in black) move in an environment constituted of the remnant neutron stellar core (in white) and a disk of neutron matter enclosing the latter.

Ellis et. al [3]

Derivation of Equations of Motion

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} = \frac{\partial D}{\partial \dot{q}_j} \,.$$

$$L = \frac{m_n}{2} \left(\dot{r}_n^2 + \left(r_n \dot{\theta}_n \right)^2 \right) + \frac{m_d}{2} \left(\dot{r}_d^2 + \left(r_d \dot{\theta}_d \right)^2 \right) + \frac{M R^2 \dot{\theta}_n^2}{4} + 2k_n (r_n - a_n)^2 + 2k_d (r_d - a_d)^2,$$
(1)

$$D = -b_n \dot{r}_n^2 - b_d \left(\dot{r}_d^2 + \left(r_d \left(\dot{\theta}_n - \dot{\theta}_d \right) \right)^2 \right) - c_n \left(\dot{r}_n^2 + \left(r_n \dot{\theta}_n \right)^2 \right) - c_d \left(\dot{r}_d^2 + \left(r_d \dot{\theta}_d \right)^2 \right).$$
⁽²⁾

Ellis et. al [3]

For r_n and \dot{r}_n : $m_n \ddot{r}_n + 2(b_n + c_n)\dot{r}_n - (m_n \dot{\theta}_n^2 + 4k_n)r_n + 4k_n a_n = 0$ For θ_n and $\dot{\theta}_n$: $\left(m_n r_n^2 + \frac{1}{2}MR^2\right)\ddot{\theta}_n + 2(m_n r_n \dot{r}_n + b_d r_d^2 + c_n r_n^2)\dot{\theta}_n - 2b_d r_d^2 \dot{\theta}_n = 0$ For r_d and \dot{r}_d : $m_d \ddot{r}_d + [2(b_d + c_d) - m_d \dot{\theta}_d^2 - 4k_d]r_d + 4k_d a_d = 0$ For θ_d and $\dot{\theta}_d$:

 $m_d r_d^2 \ddot{\theta}_d + 2[m_d r_d \dot{r}_d + r_d^2 (b_d + c_d)] \dot{\theta}_d - 2 b_d r_d^2 \dot{\theta}_n = 0$

Solutions of equation (3)

Derivation of Equations of Motion

d ∂L ∂L ∂D $dt \partial \dot{q}_j$ $\partial \dot{q}_j$ da;

Ellis et. al [3]

Code for equation (3)

rr fun(t, y): rn = y[0] thetan = y[1] rn_dot = y[2] thetan_dot = y[3]

rd = y[4]
thetad = y[5]
rd_dot = y[6]
thetad_dot = y[7]

 $rn_dotdot = 1/mn * (mn * thetan_dot**2 * rn - 4 * kn * (rn - an) - 2 * (bn + cn) * rn_dot)$ $rd_dotdot = 1/md * (md * thetad_dot**2 * rd - 4 * kd * (rd - ad) - 2 * (bd + cd) * rd_dot)$

thetan_dotdot = 1/(mn * rn**2 + M * R**2 / 2) * (-2 * mn * rn * rn_dot * thetan_dot - 2 * (bd * rd**2 + cn * rn**2) * thetan_dot + 2 * bd * rd**2 * thetad_dot) thetad_dotdot = 1/(md * rd**2) * (-2 * (md * rd * rd_dot + bd * rd**2 + cd * rd**2) * thetad_dot - 2 * bd * rd**2 * thetan_dot)

return [rn_dot, thetan_dot, rn_dotdot, thetan_dotdot, rd_dot, thetad_dot, rd_dotdot, thetad_dotdot]

y0 = [initialConditions.rn, initialConditions.thetan, initialConditions.rn_dot, initialConditions.thetan_dot, initialConditions.rd, initialConditions.thetad, initialConditions.rd_dot, initialConditions.thetad_dot]

sol = solve_ivp(fun, [0, tmax], y0=y0, max_step=dt, rtol=1, atol=1)

(3)

Derivation of Quadrupole Moment

$$h_{+} = \frac{\ddot{I}_{xx} + \ddot{I}_{yy}}{D}, \quad h_{\times} = \frac{\ddot{I}_{xy}}{D}, \quad (4)$$

$$I_{kl} = \sum_{j=n,d} \left(\bar{I}_{j,kl} - \frac{1}{3} \delta_{kl} \delta^{ab} \bar{I}_{j,ab} \right) ,$$

$$\bar{I}_{j,kl} = 3m_j x_{j,k} x_{j,l} .$$

(5)

Ellis et. al [3]

$$\delta^{ab}ar{I}_{j,ab}\equiv\sum_{a=1}^3\sum_{b=1}^3\delta^{ab}ar{I}_{j,ab}$$

Einstein sum notation

$$\delta^{00}=1, \delta^{01}=0$$

Kronecker delta

Solutions of equation (5)

$$\begin{split} \ddot{I}_{xx} &= 2m_n(\dot{r}_n^2 + r_n\ddot{r}_n)(2\cos^2\theta_n - \sin^2\theta_n) - 12m_nr_n\dot{r}_n\sin2\theta_n\dot{\theta}_n \\ &+ 3m_nr_n^2\big(2\cos2\theta_n\dot{\theta}_n + \sin2\theta_n\ddot{\theta}_n\big) + 2m_d(\dot{r}_d^2 + r_d\ddot{r}_d)(2\cos^2\theta_d - \sin^2\theta_d) \\ &- 12m_dr_d\dot{r}_d\sin2\theta_d\dot{\theta}_d + 3m_dr_d^2\big(2\cos2\theta_d\dot{\theta}_d + \sin2\theta_d\ddot{\theta}_d\big) \end{split}$$

$$\begin{split} \ddot{I}_{yy} &= 2m_n(\dot{r}_n^2 + r_n\ddot{r}_n)(2\cos^2\theta_n - \sin^2\theta_n) + 12m_nr_n\dot{r}_n\sin2\theta_n\dot{\theta}_n \\ &+ 3m_nr_n^2(2\cos2\theta_n\dot{\theta}_n + \sin2\theta_n\ddot{\theta}_n) + 2m_d(\dot{r}_d^2 + r_d\ddot{r}_d)(2\cos^2\theta_d - \sin^2\theta_d) \\ &+ 12m_dr_d\dot{r}_d\sin2\theta_d\dot{\theta}_d + 3m_dr_d^2(2\cos2\theta_d\dot{\theta}_d + \sin2\theta_d\ddot{\theta}_d) \end{split}$$

$$\begin{split} \ddot{I}_{xy} &= 3m_n \big[(\dot{r}_n^2 + r_n \ddot{r}_n) sin 2\theta_n + 4r_n \dot{r}_n cos 2\theta_n \dot{\theta}_n + r_n^2 \big(-2sin 2\theta_n \dot{\theta}_n + cos 2\theta_n \ddot{\theta}_n \big) \big] \\ &+ 3m_d \big[(\dot{r}_d^2 + r_d \ddot{r}_d) sin 2\theta_d + 4r_d \dot{r}_d cos 2\theta_d \dot{\theta}_d + r_d^2 \big(-2sin 2\theta_d \dot{\theta}_d + cos 2\theta_d \ddot{\theta}_d \big) \big] \end{split}$$

Derivation of Quadrupole Moment

$$I_{kl} = \sum_{j=n,d} \left(\bar{I}_{j,kl} - \frac{1}{3} \delta_{kl} \delta^{ab} \bar{I}_{j,ab} \right) ,$$

$$\bar{I}_{j,kl} = 3m_j x_{j,k} x_{j,l} .$$
 (5)

Ellis et. al [3]

Code for equation (5)

Ixx_2dots = 2*mn*(rnDotVals**2 + rnVals*rn2dotsVals)*(2*np.cos(thetanVals)**2 - np.sin(thetanVals)**2) \

- 12*mn*rnVals*rnDotVals*np.sin(2*thetanVals)*thetanDotVals \
- + 3*mn*(rnVals**2)*(2*np.cos(2*thetanVals)*thetanDotVals + np.sin(2*thetanVals)*thetan2dotsVals) \
- + 2*md*(rdDotVals**2 + rdVals*rd2dotsVals)*(2*np.cos(thetadVals)**2 np.sin(thetadVals)**2) \
- 12*md*rdVals*rdDotVals*np.sin(2*thetadVals)*thetadDotVals \
- + 3*md*(rdVals**2)*(2*np.cos(2*thetadVals)*thetadDotVals + np.sin(2*thetadVals)*thetad2dotsVals)

Iyy_2dots = 2*mn*(rnDotVals**2 + rnVals*rn2dotsVals)*(2*np.sin(thetanVals)**2 - np.cos(thetanVals)**2) \

- + 12*mn*rnVals*rnDotVals*np.sin(2*thetanVals)*thetanDotVals \
- + 3*mn*(rnVals**2)*(2*np.cos(2*thetanVals)*thetanDotVals + np.sin(2*thetanVals)*thetan2dotsVals) \
- + 2*md*(rdDotVals**2 + rdVals*rd2dotsVals)*(2*np.sin(thetadVals)**2 np.cos(thetadVals)**2) \
- + 12*md*rdVals*rdDotVals*np.sin(2*thetadVals)*thetadDotVals \
- + 3*md*(rdVals**2)*(2*np.cos(2*thetadVals)*thetadDotVals + np.sin(2*thetadVals)*thetad2dotsVals)

Ixy_2dots = 3*mn*((rnDotVals**2 + rnVals*rn2dotsVals)*np.sin(2*thetanVals) + 4*rnVals*rnDotVals*np.cos(2*thetanVals)*thetanDotVals

- + rnVals**2*(-2*np.sin(2*thetanVals)*thetanDotVals + np.cos(2*thetanVals)*thetan2dotsVals)) \
- + 3*md*((rdDotVals**2 + rdVals*rd2dotsVals)*np.sin(2*thetadVals) + 4*rdVals*rdDotVals*np.cos(2*thetadVals)*thetadDotVals
- + rdVals**2*(-2*np.sin(2*thetadVals)*thetadDotVals + np.cos(2*thetadVals)*thetad2dotsVals))

Plots for the Gravitational Wave Signal

h+ hx

Plot for the PSD

3. Numerical Results

Plots of H_+

PSD Plots

Change of Radius (R_{initial}=10)

Change of θ ($\theta_{initial} = 0.2$)

Increase R = 15

Change of dt (dt_{initial}=0.02)

Change of tmax (tmax_{initial}=300)

4. Conclusions and Outlook

Summary

- Adding DM cores changes the PSD noticeably
- Can recreate Ellis et al plots using eq. 1-6
- Vary parameters to other reasonable values

Limitations

Mini Oscillations not replicated by EXPLORE team

Bibliography

[1] The LIGO Scientific Collaboration, et al. "The Basic Physics of the Binary Black Hole Merger GW150914." Annalen Der Physik, vol. 529, no. 1–2, Jan. 2017, p. 1600209. arXiv.org, https://doi.org/10.1002/andp.201600209.

[2] Ellis, J., Hektor, A., Hütsi, G., Kannike, K., Marzola, L., Raidal, M., & Vaskonen, V. (2018). Search for Dark Matter Effects on Gravitational Signals from Neutron Star Mergers. *Physics Letters B*, 781, 607–610. <u>https://doi.org/10.1016/j.physletb.2018.04.048</u>

[3] Takami, K., Rezzolla, L., & Baiotti, L. (2015). Spectral properties of the post-merger gravitational-wave signal from binary neutron stars. *Physical Review D*, *91*(6), 064001.

https://doi.org/10.1103/PhysRevD.91.064001