

General Relativity Informed Neural Networks with deepxde

Alexander Dreichner¹, Akash Kav², Zena Khadour³, Tanner Nelson²

Mentors: Dr. Saeed Rastgoo², Dr. Jim Mertens⁴

Junior Mentor: Erik Weiss³

¹Goethe University, Frankfurt

²University of Alberta, Edmonton

³York University, Toronto

⁴Case Western Reserve University, Cleveland

Agenda

- Introduction
 - Project Overview
 - Neural Networks (NN)
 - Physics-Informed Neural Networks (PINNs)
 - Effective One Body Problem (EOB)
- Implementation & Results
 - Coding physics: classical solver solve_ivp and NN
- Future Directions
 - Discussion and further goals

Introduction

Project Overview

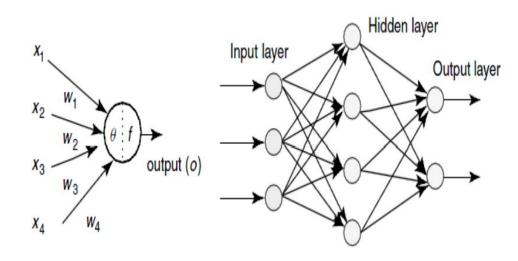
- Goals
 - Machine learning algorithms (NN) to solve EOB
 - Expand solution with higher order corrections from GR
 - Experience with deepxde Python library
 - Compare performance between classical method and neural network

Project Overview

- What methods did we use?
 - \circ PINN with Python library deepxde.
 - Implement EOB system with two Post-Newtonian (PN) terms.
 - Use numerical (Runge-Kutta) solution from solve_ivp as reference.
 - Crucial question: how do the accuracy and time compare?

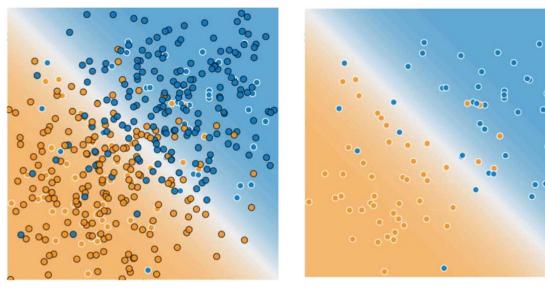
What are Neural Networks?

- → Algorithm: network of neurons
- → Neurons take in vectors and output scalars, which can be fed into other neurons
- → Outputs "propagate" until final output is given
- → Usually trained to optimize performance



(a) Artificial neuron (b)Multilayered artificial neural network

Why do we use Neural Networks?



→ Applications include: pattern recognition, data analysis and control & clustering

- \rightarrow Predicting features of data
- \rightarrow Capturing non-linear

relationships

 \rightarrow Solving complex PDEs straightforwardly

Training Data

Test Data

Introduction to Physics-Informed Neural Networks

PINN:

- Python library deepxde
- Physics informed neural network
- Incorporate physical model into NN
- E.g. Burgers equation:

$$rac{\partial u}{\partial t} + u rac{\partial u}{\partial x} = v rac{\partial^2 u}{\partial x^2}$$

• Solution has to fulfill PDE and match initial/boundary conditions $\, ilde{u}$

Introduction to Physics-Informed Neural Networks

How do we introduce physics?

Define Loss function $L = w_{data}L_{data} + w_{PDE}L_{PDE}$

•
$$L_{data} = \frac{1}{N} \sum_{i=1}^{N} (u(x_i, t_i) - \tilde{u}_i)^2$$
 ensures u(x,t) matches the initial/boundary conditions

•
$$L_{PDE} = \frac{1}{N_{PDE}} \sum_{j=1}^{N_{PDE}} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} \right)^2 |_{(x_j,t_j)}$$
 ensures u(x,t) obeys PDE

- w_{PDE} and w_{data} can be used to adjust the interplay between both Loss functions
- L_{data} supervised loss (data to match exists) L_{PDE} unsupervised loss

Introduction to Physics-Informed Neural Networks

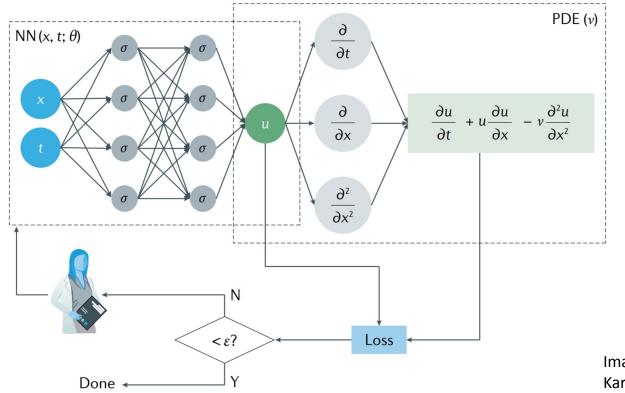


Image Credit: Karniadakis et al, 2021

Effective One-Body Problem

- The effective one-body problem is a simplification of a central force system involving two particles into an effective single particle in an external potential
- The approach involves a change of coordinates to express the positions as a single difference vector in the center of mass frame
- It also exploits symmetries, which lead to conservation of energy, momentum, and angular momentum, to simplify the problem further

Effective One-Body Problem

• The Newtonian EOB is the special case where the force between the particles is the gravitational force which leads to this Lagrangian: $L = \frac{1}{2}\mu \left(\dot{r}^2 + r^2 \dot{\theta}^2\right) - \frac{GM\mu}{r}$

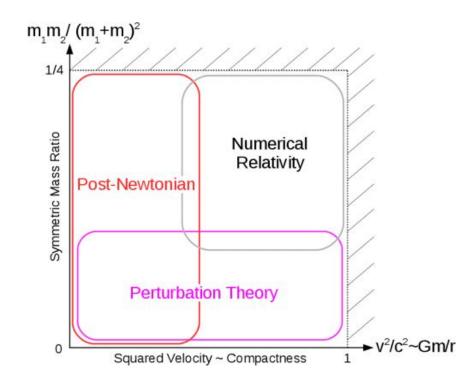
where μ is the reduced mass, M is the total mass, G is the gravitational constant, r is the separation distance, and θ is the angle

• Plugging into the Euler-Lagrange equations yields:

$$\ddot{r}=r\dot{ heta}^2+rac{GM}{r^2} \qquad \qquad \ddot{ heta}=-rac{2\dot{r}\dot{ heta}}{r}$$

Post Newtonian Corrections to EOB

- The post-Newtonian expansion is an approximation of solutions to the Einstein field equations
- It is most accurate in the regime of small speeds and weak fields
- It turns out that PN expansions are rather effective and even apply to situations outside of the expected regimes, e.g. black hole inspirals



Post Newtonian Corrections to EOB

• For our purposes, the post-Newtonian corrections can be added as generalized force terms in the Euler-Lagrange equations:

$$rac{d}{dt} \left(rac{\partial L}{\partial \dot{q}}
ight) - rac{\partial L}{\partial q} = Q_q^{(1PN)} + Q_q^{(2.5PN)} + Q_q^{(DF)}$$

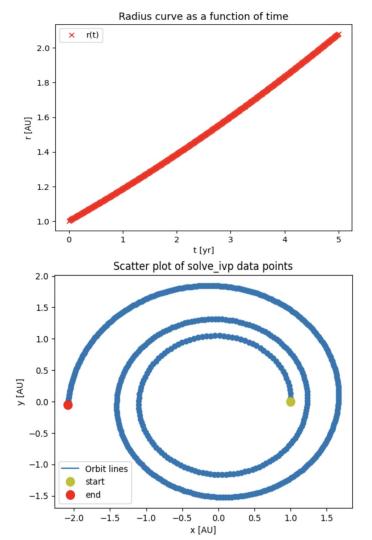
- First order PN correction
- Second PN term which corresponds to the radiation of gravitational waves
- Dynamical friction term due to dark matter (we did not end up including this in our work)

Implementing EOB Equations into Neural Networks

- I implemented **dimensional** equations into the NN and results
- Solve_ivp, then deepxde with variables r, θ
- Important parameters: μ (reduced mass), η (symmetric mass ratio)
- Broad picture: do solve_ivp solutions make sense?
- Expand on specific of learnings:
 - Non-dimensionalization of equations
 - 1PN corrections, rescaling, study of one orbit only
 - Train on steadily increasing time domain for increased accuracy

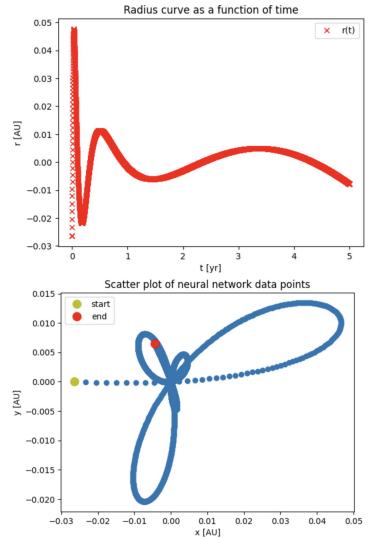
Dimensional Equations -Classical Solver

- solve_ivp used to solve differential equations
- $m_1 = 2 M_{\odot}$; $m_2 = 30 M_{\odot}$; $r_0 = 1 AU$
- Gravitational slingshot orbit: not bounded
- Initial conditions obeyed
- Appears physical, therefore reference solution



Dimensional Equations - NN

- NN solution bounded and precessing
- Unphysical radius through zero
- The initial conditions are not obeyed
- NN incorrectly learning
- How do our parameters line up with PN regime?

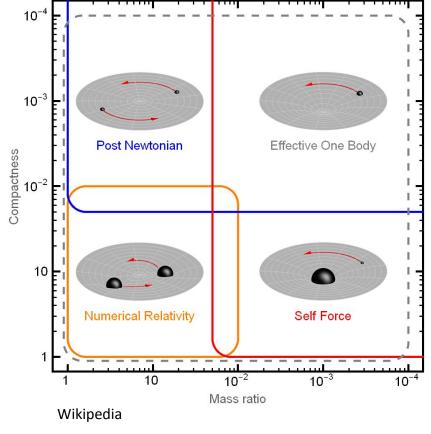


Parameter Regime for PN Corrections

- Compactness: ratio of distance from event horizon R_s/R
- Mass ratio $X = m_2/m_1$: borderline
- Try new mass and radius values:

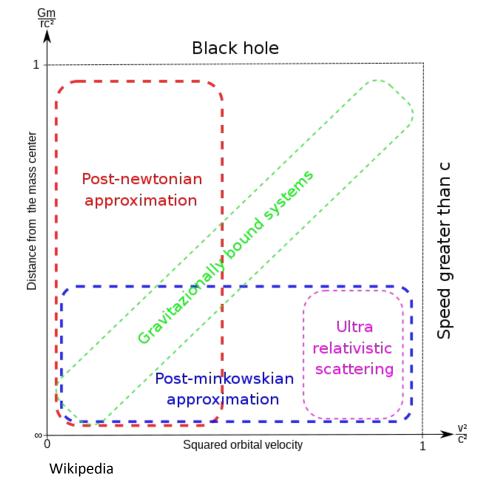
$$m_1 = 1 M_{\odot}; m_2 = 10^{-3} M_{\odot}; r_0 = 10 \text{ AU}.$$

• X -> 0, η -> X



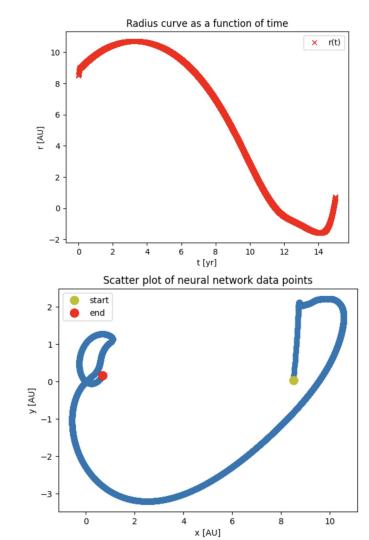
Parameter Regime for PN Corrections

- Gravitationally bound: small region in parameter space
- Further confirmation: solve_ivp physical
- Unbound orbits are physical within PN
- Can NN learn unbound orbit?



Dimensional Equation Corrected - NN

- New parameters implemented. Radius passes through zero
- Initial conditions still not obeyed, but better
- Makes even less sense
- Consider dimensionless equations for simplicity



Non-dimensionalised PN Equations

$$\begin{split} Q_{r_*}^{(1PN)} &= \frac{Gm\mu}{r_*^2 c^2} \left[(4+2\eta) \frac{Gm}{r_*} - (3\eta+1) r_*^2 \dot{\theta_*}^2 + \dot{r_*}^2 (-\frac{7}{2}\eta+3) \right] \\ & \downarrow \\ F_r^{(1PN)} &\equiv \frac{2R_s}{\mu c^2} Q_{r_*}^{(1PN)} = \left[(2+\eta) r^{-3} - (3\eta+1) \dot{\theta}^2 + \frac{1}{2} (6-7\eta) r^{-2} \dot{r}^2 \right] \\ & \to \text{ND variables: } r = \frac{r_*}{r_0} \text{ , } t = \frac{t_*}{t_0} \end{split}$$

→ Scale parameters: $r_0 = ct_0 = R_s = \frac{2Gm}{c^2}$ → Sol'n only depends on η and ICs!

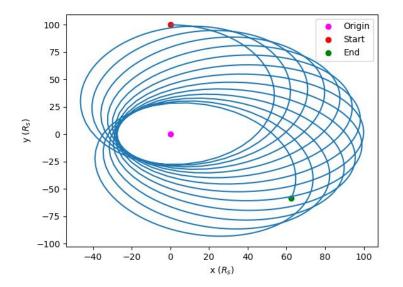
Rastgoo et al, 2023 & courtesy of Erik Weiss

Non-dimensionalised PN Equations

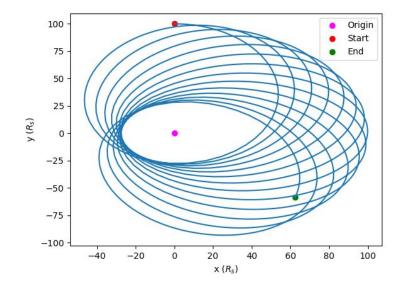
$$Q_{\theta_*}^{(1PN)} = \frac{Gm\mu}{c^2} \dot{r}_* \dot{\theta_*} [(4-2\eta)]$$
$$\downarrow$$
$$F_{\theta}^{(1PN)} \equiv \frac{1}{\mu c^2} Q_{\theta_*}^{(1PN)} = \left[(2-\eta) \dot{r} \dot{\theta} \right]$$

Rastgoo et al, 2023 & courtesy of Erik Weiss

Non-dimensional Solutions - RK Method



1PN Correction with RK methods



2.5PN Correction with RK methods

Non-dimensional Solutions - RK Method

$$\frac{df_{\rm b}}{dt} = \frac{192\pi}{5} f_{\rm b}^2 \left(\frac{2\pi G \mathcal{M} f_{\rm b}}{c^3}\right)^{5/3} F(e)$$

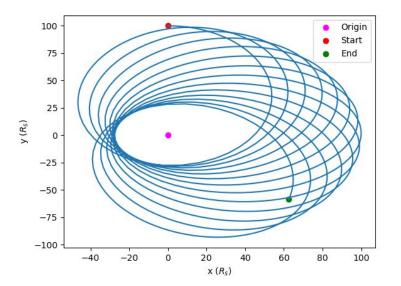
$$\rightarrow \frac{\dot{f}}{f} \propto \eta f^{\frac{8}{3}} \approx 10^{-12}$$

$$\rightarrow \frac{\Delta f}{f} \approx 10^{-8} \text{ over one orbit}$$

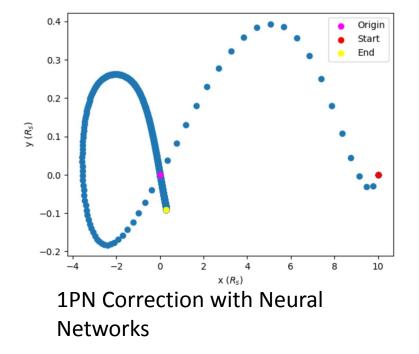
- \rightarrow LOTS of orbits to see a difference
- \rightarrow Numerical errors outweigh frequency

increase

Non-dimensional Solutions - RK vs. PINN



1PN Correction with RK methods



Implementation & Findings

Key findings for PINNs:

- Reciprocals lead to infinite losses \rightarrow multiply equations by r^n
- NN prefers values of order unity \rightarrow rescale reference scales depending on initial radius r_i in units of $\frac{GM}{c^2}$

$$r_0 = rac{GMr_i}{c^2} \hspace{1cm} t_0 = rac{GMr_i\sqrt{r_i}}{c^3}$$

• Equations at 1 PN order (r, t dimensionless. Different to Zena's)

$$\ddot{r} = r\dot{\phi}^2 + rac{1}{r^2} igg[-1 + (4 + 2\eta) rac{1}{rr_i} - (3\eta + 1) rac{r^2}{r_i} \dot{\phi}^2 + rac{\dot{r}^2}{r_i} igg(-rac{7}{2}\eta + 3 igg) igg] \ \ddot{\phi} = rac{1}{r^2 r_i^2} (4 - 2\eta - 2rr_i) \dot{r}r_i \dot{\phi}$$

Implementation & Findings

Key findings for PINNs:

- Loss weights crucial to precise result
- Second equation seems less important \rightarrow choose lower loss weights
 - \circ Why? Newtonian case: angular momentum $L=mr^2\dot{\phi}$ conserved
 - \circ $ec{r}$ depends on r only
 - \circ Once we have $oldsymbol{\gamma}$ it is easy to find $oldsymbol{\phi}$
 - PN corrections are small, so this should (approximately) still hold
- Train on newtonian case first, add PN corrections later
- Difficult to extend time beyond one orbit

Results

Improvements lead to good results

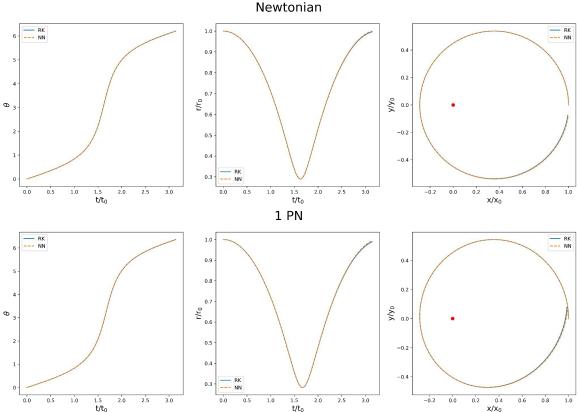
NN matches RK

Newtonian:

• Elliptical, closed orbit

1 PN:

• Precession visible



Results

Now increase timespan by 10%:

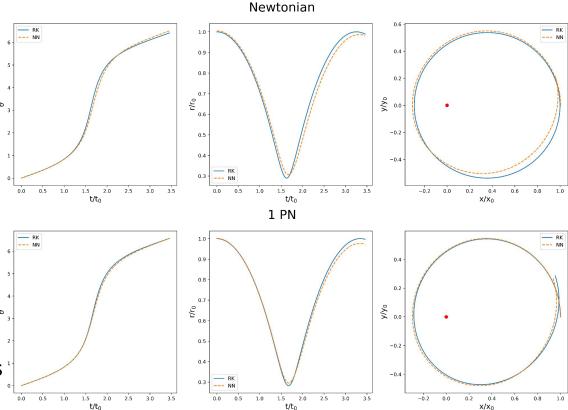
Result from NN deviates from RK

Tendency to underestimate r

Solution for θ better than for r

However, orbit still close to what is expected

Longer training with more points ¹ leads to better solution, but takes ¹ longer



Difficulties Encountered in NN

- One difficulty we encountered while training the neural network was that it often did not obey the initial conditions that were fed into it
- This issue was partially resolved by modifying the output of the network such that it satisfied these conditions, e.g. we could modify the radius in the following way:

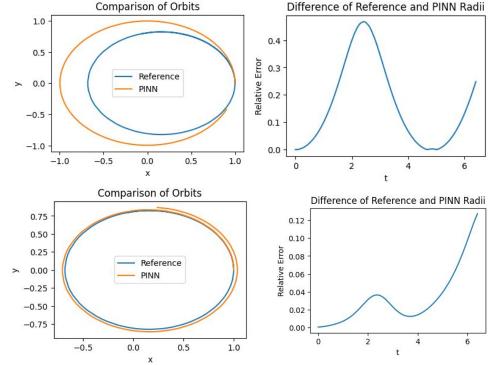
$$r_{new} = r_{old}t + r_0$$

• The neural network also usually struggled to follow an elliptical path, so we trained it on a circle first to get it moving along the correct trajectory

Results for Newtonian NN

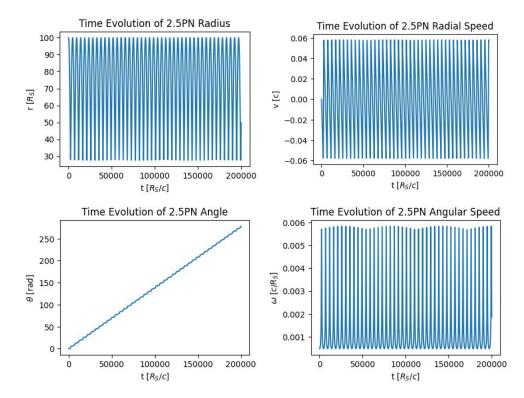
• Training the neural network on the entire time interval generally led to poor results

 To fix this issue, we instead trained the network on a small time segment and then slightly increased this segment and continued training, etc.



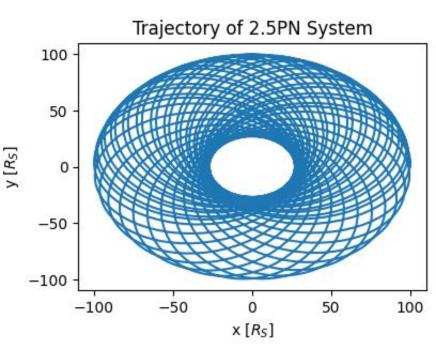
Results for PN Corrections

 Here is an example of the result we obtained for the evolution of coordinates and velocities of the reference solution for the 2.5PN correction



Results for PN Corrections

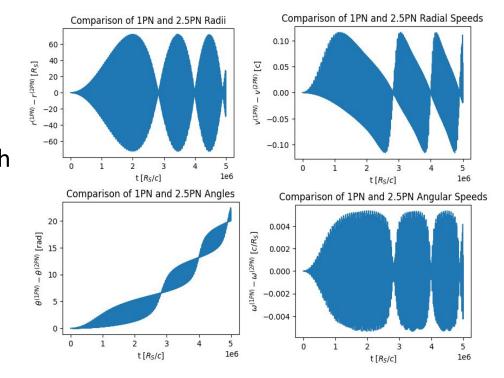
- This plot shows how the system (up to the 2.5PN correction) evolves in space
- As seen here, the additional terms in the PN expansion lead to precession of the orbit



Results for PN Corrections

 Here we show how the 1PN corrected solution and the 2.5PN corrected solution differ from each

other

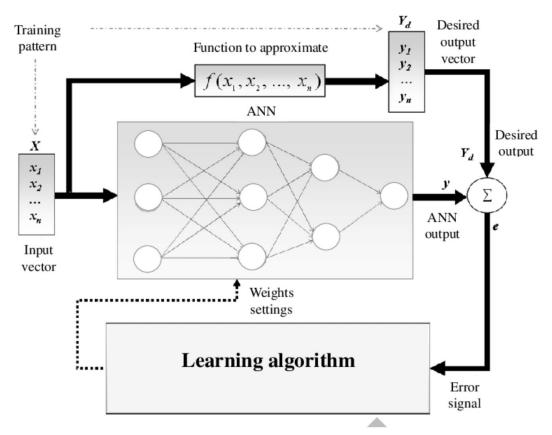


Euture

Future Directions

- Hard constraints
 - Want to prevent radius from passing through zero.
- Consequently, NN will realize $r \le 0$ unphysical
 - Will hard constraints improve NN learning?
 - Slingshot orbits?
 - Bounded orbits obeying initial conditions?

Future Directions



- \rightarrow Try training network on solve.ivp sol'n
- \rightarrow Still a PINN in that case?

→ Solve_ivp data for one set of params/ICs may improve results!

Future Directions

- Repeat experiments using many different network architectures to find which setup more consistently leads to the best output
 - Vary the number of nodes per layer and the number of layers
 - Try different activation functions
 - Try different optimizers
 - Change how many iterations to train the model for

Summary

- NN can help us solve EOB
- In-/Output should be $[0,1] \rightarrow$ Non-dimensionalize and scale equations
- Network parameters need to be accurately adjusted to fit problem
- Pre-existing solutions useful to assess accuracy of results and can be used to train NN
- So far PINN results lack accuracy: problems with periodicity

Thank you for listening!