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Project Overview

e Goals
o Machine learning algorithms (NN) to solve EOB
o Expand solution with higher order corrections from GR
o Experience with deepxde Python library
o Compare performance between classical method and
neural network



Project Overview

e What methods did we use?
© PINN with Python library deepxde.
o Implement EOB system with two Post-Newtonian (PN) terms.
o Use numerical (Runge-Kutta) solution from solve_ivp as reference.

o Crucial question: how do the accuracy and time compare?



What are Neural Networks?

= Algorithm: network of neurons

=+ Neurons take in vectors and output
scalars, which can be fed into other
neurons

=» Outputs “propagate” until final
output is given

=+ Usually trained to optimize
performance

(a) Artificial neuron  (b)Multilayered artificial neural network

Image Credit: Kumar et al, 2012



Why do we use Neural Networks?

— Applications include:
pattern recognition, data
analysis and control &
clustering

— Predicting features of data

— Capturing non-linear
relationships
: — Solving complex PDEs

Training Data Test Data straightforwardly

Image Credit: Google



Introduction to Physics-Informed Neural
Networks

PINN:

Python library deepxde

Physics informed neural network
Incorporate physical model into NN

E.g. Burgers equation:

T
ot oxr O x>

e Solution has to fulfill PDE and match initial/boundary conditions



Introduction to Physics-Informed Neural
Networks

How do we introduce physics?

e Define Loss function L = ’wdataLdata + ’LUPDELPDE

1 o _
o L= > (w(xi,t;) — @)® ensures u(x,t) matches the initial/boundary conditions
=1

o Lppy— — NEP:DE (8—u +u% _v8_2u)2| ensures u(x,t) obeys PDE
PDE = o 2. 5 5 552 ) @it ) y

e WppE and Wdata can be used to adjust the interplay between both Loss functions
- supervised loss (data to match exists)

Ldata .
- unsupervised loss

Lppg



Introduction to Physics-Informed Neural
Networks
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Image Credit:
Done Y Karniadakis et al, 2021




Effective One-Body Problem

® The effective one-body problem is a simplification of a central force system

involving two particles into an effective single particle in an external
potential

® The approach involves a change of coordinates to express the positions as a
single difference vector in the center of mass frame

e It also exploits symmetries, which lead to conservation of energy,
momentum, and angular momentum, to simplify the problem further



Effective One-Body Problem

® The Newtonian EOB is the special case where the force between the
particles is the gravitational force which leads to this Lagrangian:

I, = %’u, (T'Z -+ ,’,,29.2) — —GM'M

T

where [ is the reduced mass, M is the total mass, G is the gravitational
constant, r is the separation distance, and 0 is the angle

e Plugging into the Euler-Lagrange equations yields:

/”3

i = rf? Ci]zw § = — 28



. . o 2
e The post-Newtonian expansion is an m,m,/ (m,+m,)

A

approximation of solutions to the e iy

Einstein field equations |
e Itis most accurate in the regime of 5 Numerical

s Relativity

small speeds and weak fields g | Post-Newtonian
e It turns out that PN expansions are 3 J

rather effective and even apply to &

situations outside of the expected Perturbation Theory

regimes, e.g. black hole inspirals MAN / 1 o e

Squared Velocity ~ Compactness

Image Credit: Blanchet, 2018



Post Newtonian Corrections to EOB

e [or our purposes, the post-Newtonian corrections can be added
as generalized force terms in the Euler-Lagrange equations:

d oL oL __ 1PN 2.5PN
2(%) - & = QM+ oM +

e F[irst order PN correction
e Second PN term which corresponds to the radiation of
gravitational waves






Implementing EOB Equations into Neural
Networks

| implemented dimensional equations into the NN and results
Solve_ivp, then deepxde with variablesr, 6
Important parameters: u (reduced mass), N (symmetric mass ratio)
Broad picture: do solve_ivp solutions make sense?
Expand on specific of learnings:

o Non-dimensionalization of equations

o 1PN corrections, rescaling, study of one orbit only

o Train on steadily increasing time domain for increased accuracy



solve_ivp used to solve differential equations
m, =2M®;m2 =30 MQ; r0=1AU
Gravitational slingshot orbit: not bounded
Initial conditions obeyed

Appears physical, therefore reference
solution
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Radius curve as a function of time
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Parameter Regime
for PN Corrections

Compactness: ratio of distance from event
horizon RS/R

Mass ratio X = mz/ml: borderline
Try new mass and radius values:

o m =1Mg;m, =10"Mg;r, =10 AU.
X->0, n->X
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Parameter
Regime for PN
Corrections

Gravitationally bound: small
region in parameter space
Further confirmation: solve_ivp
physical

Unbound orbits are physical
within PN

Can NN learn unbound orbit?
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Dimensional Eguation
Corrected - NN

New parameters implemented. Radius
passes through zero

Initial conditions still not obeyed, but

better

Makes even less sense

Consider dimensionless equations for

simplicity
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Non-dimensionalised PN Equations

(1PN Gmpu
627* ) 72(2 [(4+2U)

—(3n+1)r 29 47, (—%7}+3)]

’

2R, .
FUEN) = (LPN) — {(2 +n)r 2 —(3n+1)6 +
uc?

1
5 (6 = 717)T27.°2]

— ND variables: r = == , ¢ = L
L0

— Scale parameters: , = ¢ty = R, = 2Gm

c2

— Sol’n only depends on 7 and ICs!

Rastgoo et al, 2023
& courtesy of Erik Weiss



Non-dimensionalised PN Equations

Gm
Qp. ) = =5 b.[(4 — 2m)

!

1PN 1 PN " -
F()(u ¥ = - Qf)l ) = {(2 — 77)7%)]

Rastgoo et al, 2023
& courtesy of Erik Weiss



Non-dimensional Solutions - RK Method
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Non-dimensional Solutions - RK Method
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— LOTS of orbits to see a difference

~ 108 over one orbit

— Numerical errors outweigh frequency

increase
Credit: Will, 2011
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Implementation & Findings

Key findings for PINNs:

® Reciprocals lead to infinite losses — multiply equations by r"

e NN prefers values of order unity — rescale reference scales depending on initial
GM

c2

GMr; GMri\/Ti
C C

radius 7T; in units of

e Equations at 1 PN order (r, t dimensionless. Different to Zena’s)

g 1 1 - oy B R
i =r¢’ + — | -1+ (4+ 2n) (3n+1)—¢2+—(—n+3)]
T (i B Tz Py 2

. 1 g
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Implementation & Findings

Key findings for PINNSs:

e |oss weights crucial to precise result

e Second equation seems less important — choose lower loss weights
o  Why? Newtonian case: angular momentum L = mr2q5 conserved
o ¢ depends on Tonly
o Once we have pitis easy to find ¢
o PN corrections are small, so this should (approximately) still hold

e Train on newtonian case first, add PN corrections later

e Difficult to extend time beyond one orbit



Improvements lead to good results .
NN matches RK

Newtonian:

1PN:

Newtonian

Elliptical, closed orbit

Precession visible
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Newtonian

Now increase timespan by 10%: . . :

Result from NN deviates from RK

Tendency to underestimate r y e | el
t/to e

Solution for @ better than forr - .

However, orbit still close to what . N

is expected : -

Longer training with more points -

leads to better solution, but takes '* " By

longer e
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Difficulties Encountered in NN

® One difficulty we encountered while training the neural network was that it
often did not obey the initial conditions that were fed into it

® This issue was partially resolved by modifying the output of the network
such that it satisfied these conditions, e.g. we could modify the radius in the

following way:

Tnew = Toldt + T
e The neural network also usually struggled to follow an elliptical path, so we

trained it on a circle first to get it moving along the correct trajectory



Results for Newtonian NN

Comparison of Orbits

® Training the neural network on the
entire time interval generally ledto  **] o
poor results ) :
e To fix this issue, we instead I s
trained the network on a small
time segment and then slightly = °*] —
increased this segment and e

continued training, etc.
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Results for PN Corrections

o Time Evolution of 2.5PN Radius - Time Evolution of 2.5PN Radial Speed
e Hereis an example of the el .
result we obtained for the < E
evolution of coordinates and  “] o)
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Results for PN Corrections

Trajectory of 2.5PN System

100 -
® This plot shows how the system (up to

the 2.5PN correction) evolves in space s

® Asseen here, the additional terms in

y [Rs]
o

the PN expansion lead to precession of G -

the orbit




Results for PN Corrections

Comparison of 1PN and 2.5PN Radii Comparison of 1PN and 2.5PN Radial Speeds

® Here we show how the 1PN z g
corrected solution and the 2.5PN 1
corrected solution differ from each 5+ 71— 3 Lt VL
e Y
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e Hard constraints

o Want to prevent radius from passing through zero.
e Consequently, NN will realize r < 0 unphysical

o  Will hard constraints improve NN learning?

o Slingshot orbits?

o Bounded orbits obeying initial conditions?
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pattern
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— Try training network on
solve.ivp sol’n

— Still a PINN in that case?

— Solve_ivp data for one set
of params/ICs may improve
results!

Image Credit: Quinonez et al, 2015



® Repeat experiments using many different network architectures to find
which setup more consistently leads to the best output
o Vary the number of nodes per layer and the number of layers
o Try different activation functions
o Try different optimizers

o Change how many iterations to train the model for



Summary

® NN can help us solve EOB

® [n-/Output should be [0,1] — Non-dimensionalize and scale equations

e Network parameters need to be accurately adjusted to fit problem

® Pre-existing solutions useful to assess accuracy of results and can be used to
train NN

e So far PINN results lack accuracy: problems with periodicity



Thank you for listening!



