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Introduction



Project Overview
● Goals

○ Machine learning algorithms (NN) to solve EOB

○ Expand solution with higher order corrections from GR

○ Experience with deepxde Python library 

○ Compare performance between classical method and 

neural network



Project Overview
● What methods did we use?

○ PINN with Python library deepxde.

○ Implement EOB system with two Post-Newtonian (PN) terms.

○ Use numerical (Runge-Kutta) solution from solve_ivp as reference.

○ Crucial question: how do the accuracy and time compare?



What are Neural Networks? 
→ Algorithm: network of neurons

→ Neurons take in vectors and output 
scalars, which can be fed into other 
neurons 

→ Outputs “propagate” until final 
output is given

→ Usually trained to optimize 
performance  

Image Credit: Kumar et al, 2012



Why do we use Neural Networks?

Training Data Test Data

→ Applications include: 

pattern recognition, data 

analysis and control & 

clustering 

→ Predicting features of data 

→ Capturing non-linear 

relationships 

→ Solving complex PDEs 

straightforwardly 

Image Credit: Google



Introduction to Physics-Informed Neural 
Networks
PINN:

● Python library deepxde

● Physics informed neural network

● Incorporate physical model into NN

● E.g. Burgers equation: 

● Solution has to fulfill PDE and match initial/boundary conditions 



Introduction to Physics-Informed Neural 
Networks
How do we introduce physics?

● Define Loss function 

●                                                   ensures u(x,t) matches the initial/boundary conditions

●                                                                            ensures  u(x,t) obeys PDE

●               and                  can be used to adjust the interplay between both Loss functions
●           - supervised loss (data to match exists)
●           - unsupervised loss



Introduction to Physics-Informed Neural 
Networks

Image Credit: 
Karniadakis et al, 2021  



Effective One-Body Problem
● The effective one-body problem is a simplification of a central force system 

involving two particles into an effective single particle in an external 

potential

● The approach involves a change of coordinates to express the positions as a 

single difference vector in the center of mass frame

● It also exploits symmetries, which lead to conservation of energy, 

momentum, and angular momentum, to simplify the problem further



Effective One-Body Problem
● The Newtonian EOB is the special case where the force between the 

particles is the gravitational force which leads to this Lagrangian:

where μ is the reduced mass, M is the total mass, G is the gravitational 

constant, r is the separation distance, and θ is the angle

● Plugging into the Euler-Lagrange equations yields:



Post Newtonian Corrections to EOB
● The post-Newtonian expansion is an 

approximation of solutions to the 

Einstein field equations

● It is most accurate in the regime of 

small speeds and weak fields

● It turns out that PN expansions are 

rather effective and even apply to 

situations outside of the expected 

regimes, e.g. black hole inspirals

Image Credit: Blanchet, 2018



Post Newtonian Corrections to EOB
● For our purposes, the post-Newtonian corrections can be added 

as generalized force terms in the Euler-Lagrange equations:

● First order PN correction
● Second PN term which corresponds to the radiation of 

gravitational waves
● Dynamical friction term due to dark matter (we did not end up 

including this in our work)



Implementation
& Results



Implementing EOB Equations into Neural 
Networks
● I implemented dimensional equations into the NN and results
● Solve_ivp, then deepxde with variables r, θ
● Important parameters: μ (reduced mass),  η (symmetric mass ratio)
● Broad picture: do solve_ivp solutions make sense?
● Expand on specific of learnings:

○ Non-dimensionalization of equations
○ 1PN corrections, rescaling, study of one orbit only
○ Train on steadily increasing time domain for increased accuracy



Dimensional Equations - 
Classical Solver
● solve_ivp used to solve differential equations

● m
1  

= 2 M
☉ 

; m
2  

= 30 M
☉

; r
0
 = 1 AU

● Gravitational slingshot orbit: not bounded

● Initial conditions obeyed

● Appears physical, therefore reference 

solution



Dimensional Equations - NN

● NN solution bounded and precessing
● Unphysical radius through zero
● The initial conditions are not obeyed
● NN incorrectly learning
● How do our parameters line up with PN 

regime?



Parameter Regime 
for PN Corrections

● Compactness: ratio of distance from event 

horizon R
s
/R

● Mass ratio X = m
2
/m

1
: borderline

● Try new mass and radius values:

○ m
1  

= 1 M
☉ 

; m
2  

= 10-3 M
☉

; r
0
 = 10 AU.

● X -> 0,  η -> X

Wikipedia



Parameter 
Regime for PN 
Corrections
● Gravitationally bound: small 

region in parameter space

● Further confirmation: solve_ivp 

physical

● Unbound orbits are physical 

within PN

● Can NN learn unbound orbit?

Wikipedia



Dimensional Equation 
Corrected - NN
● New parameters implemented. Radius 

passes through zero

● Initial conditions still not obeyed, but 

better

● Makes even less sense

● Consider dimensionless equations for 

simplicity



Non-dimensionalised PN Equations 

→ ND variables:            , 

→ Scale parameters:                        

→ Sol’n only depends on      and ICs!    
Rastgoo et al, 2023 
& courtesy of Erik Weiss



Non-dimensionalised PN Equations 

Rastgoo et al, 2023 
& courtesy of Erik Weiss



Non-dimensional Solutions - RK Method 

2.5PN Correction with RK 
methods

1PN Correction with RK 
methods 



Non-dimensional Solutions - RK Method 

Credit: Will, 2011

→

→                             over one orbit

→ LOTS of orbits to see a difference   

→ Numerical errors outweigh frequency 

increase                                            



Non-dimensional Solutions - RK vs. PINN

1PN Correction with Neural 
Networks

1PN Correction with RK 
methods 



Implementation & Findings
Key findings for PINNs:

● Reciprocals lead to infinite losses → multiply equations by 

● NN prefers values of order unity → rescale reference scales depending on initial 

radius          in units of 

● Equations at 1 PN order (r, t dimensionless. Different to Zena’s)



Implementation & Findings
Key findings for PINNs:

● Loss weights crucial to precise result

● Second equation seems less important → choose lower loss weights

○ Why? Newtonian case: angular momentum                       conserved

○     depends on    only   

○ Once we have     it is easy to find      

○ PN corrections are small, so this should (approximately) still hold

● Train on newtonian case first, add PN corrections later 

● Difficult to extend time beyond one orbit



Results
Improvements lead to good results

NN matches RK

Newtonian:

● Elliptical, closed orbit

1 PN:

● Precession visible



Results
Now increase timespan by 10%:

Result from NN deviates from RK

Tendency to underestimate r

Solution for     better than for r

However, orbit still close to what
is expected

Longer training with more points
leads to better solution, but takes 
longer



Difficulties Encountered in NN
● One difficulty we encountered while training the neural network was that it 

often did not obey the initial conditions that were fed into it

● This issue was partially resolved by modifying the output of the network 

such that it satisfied these conditions, e.g. we could modify the radius in the 

following way:

● The neural network also usually struggled to follow an elliptical path, so we 

trained it on a circle first to get it moving along the correct trajectory



Results for Newtonian NN
● Training the neural network on the 

entire time interval generally led to 

poor results

● To fix this issue, we instead 
trained the network on a small 
time segment and then slightly 
increased this segment and 
continued training, etc.



Results for PN Corrections

● Here is an example of the 

result we obtained for the 

evolution of coordinates and 

velocities of the reference 

solution for the 2.5PN 

correction



Results for PN Corrections

● This plot shows how the system (up to 

the 2.5PN correction) evolves in space

● As seen here, the additional terms in 

the PN expansion lead to precession of 

the orbit



Results for PN Corrections

● Here we show how the 1PN 

corrected solution and the 2.5PN 

corrected solution differ from each 

other



Future 
Directions



Future Directions 
● Hard constraints

○ Want to prevent radius from passing through zero.

● Consequently, NN will realize r ≤ 0 unphysical

○ Will hard constraints improve NN learning?

○ Slingshot orbits?

○ Bounded orbits obeying initial conditions?



Future Directions

→ Try training network on 
solve.ivp sol’n

→ Still a PINN in that case?

→ Solve_ivp data for one set 
of params/ICs may improve 
results!

Image Credit: Quinonez et al, 2015



Future Directions
● Repeat experiments using many different network architectures to find 

which setup more consistently leads to the best output

○ Vary the number of nodes per layer and the number of layers

○ Try different activation functions

○ Try different optimizers

○ Change how many iterations to train the model for



Summary
● NN can help us solve EOB

● In-/Output should be [0,1] → Non-dimensionalize and scale equations 

● Network parameters need to be accurately adjusted to fit problem

● Pre-existing solutions useful to assess accuracy of results and can be used to 

train NN

● So far PINN results lack accuracy: problems with periodicity



Thank you for listening!


