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Motivation and plan 2

Wormholes in GR: main problem:
Necessity of exotic matter, NEC/WEC violation

Notion of a wormhole: spherical vs. cylindrical

Why GR? Observational status, interest in macroscopic size

Why cyl. symmetry? Attempt to circumvent “topol. censorship”

Static cylindrical wormholes

∗ A no-go theorem: (ρ < 0) for twice asympt. regular wormholes
∗ Example: Einstein-Maxwell fields

Rotation.

∗ Structure of the equations, favorable for WH construction
∗ Problem: Bad asymptotic behavior
∗ Examples: vacuum, scalar-vacuum solutions, anisotr. fluid etc.
∗ Problem: no flat infinity ⇒ no observability

Thin shells: attempt to construct a potentially observable wormhole
by joining the throat region with flat space regions

Examples and concluding remarks
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Wormholes (spherical vs. cylindrical) 2a
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Brief wormhole history 2b
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Wormholes (spherical vs. cylindrical) 3
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Static, spherically symmetric wormholes: basic facts 4
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Boundary conditions for cyl. wormholes: observability 5

ds2 = e2γ(u)dt2 − e2α(u)du2 − e2ξ(u)dz2 − e2β(u)dϕ2
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Static cyl. systems: Einstein equations 6

ds2 = e2γ(u)dt2 − e2α(u)du2 − e2ξ(u)dz2 − e2β(u)dϕ2
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Static cyl. systems: Conditions on the throat 7

ds2 = e2γ(u)dt2 − e2α(u)du2 − e2ξ(u)dz2 − e2β(u)dϕ2

We use the harmonic radial coordinate: α = β + γ + µ.
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Example: linear and nonlinear electrodynamics (NED) 9

K.A. Bronnikov Potentially observable cylindrical wormholes without exotic matter in general relativity



Conclusion on static cyl. wormholes 10

Cyl wormhole geometries (with r -throats) can exist
without WEC or NEC violation.

At an a-throat, negative density is required.

Significant difficulty (as always with cyl. symmetry):
obtaining desirable asymptotics.

Twice asymptotically regular wormholes necessarily involve
negative density.

Can rotation help?
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Rotation: Ricci and Einstein tensors 11

ds2 = e2γ(u)[dt − E e−2γdϕ]2 − e2αdx2 − e2µdz2 − e2βdϕ2
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Wormhole geometry 12

ds2 = e2γ(u)[dt − E e−2γdϕ]2 − e2αdx2 − e2µdz2 − e2βdϕ2

Definitions of throats: the same as in the static case:

r-throat: a regular minimum of the circular radius r(x) = exp(β).
r-wormhole: a regular configuration with r � rmin on both sides.

a-throat: a regular minimum of the area function a(x) = exp(β + µ).
a-wormhole: a regular configuration with a� amin on both sides.

Due to rotation, it is much easier to obtain wormholes than with ω = 0.

Main problem: bad asymptotic behavior,
e.g., we do not have ω → 0 where γ, µ→ const since

ω = ω0 e
−µ−2γ , ω0 = const,

at least in this comoving reference frame.
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Example 1: a massless scalar field 13
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Building asymptotically flat models 14
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Building asymptotically flat models 2 15
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Building phantom-free models 16

Can both surface SETs be physically plausible and non-exotic
under some choice of the system parameters?

Criterion: the WEC (including the NEC):

S00/g00 = σ ≥ 0, Sabξ
aξb ≥ 0, (1)

where ξa is any null vector (ξaξa = 0) on Σ = Σ±; the second inequality
comprises the NEC as part of the WEC.

Instead of working with arbitrary ξa, it is sufficient to find σ and principal
pressures pz , pϕ as eigenvalues of the surface SET in local Minkowski

(tangent) space, or, equivalently, the quantities K̃mn. To do that, we can
use any orthonormal triad on Σ±.
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Building phantom-free models 2 17

K.A. Bronnikov Potentially observable cylindrical wormholes without exotic matter in general relativity



No-go theorem 18
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Equations for perfect fluids 19

For perfect fluids with p = wρ, w = const, we have
T ν
µ = ρ diag(1,−w ,−w ,−w). The conservation law ∇νT ν

µ = 0 has the form

p′ + (ρ+ p)γ′ = 0 ⇒ wρ′ + (1 + w)γ′ = 0.

(the same as in the static case). For w 6= 0 it gives

ρ = ρ0 e
−γ(w+1)/w , ρ0 = const,

and, in terms of the harmonic coordinate x (α = β + γ + µ), the Einstein
equations for our metric read

e−2αγ′′ + 2ω2 = 1
2
(3w + 1)κρ,

e−2αµ′′ = 1
2
(w − 1)κρ,

e−2αβ′′ − 2ω2 = 1
2
(w − 1)κρ,

e−2α(β′γ′ + β′µ′ + γ′µ′) + ω2 = wκρ.

Also recall that ω = ω0 e
−µ−2γ .

These equations are completely analytically solved only for w = −1 (a
cosmological constant) - a case of no interest due to the above no-go theorem.
In other cases we can seek special solutions.
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Example 2: Stiff perfect fluid. Solution 20

Assume w = 1. Then there is a special exact wormhole solution:

µ, γ = const, eβ =
k√

2ω2
0 cos(kx)

, k = const > 0, x ∈ (−π/2, π/2),

E =
1

ω0

∫
k2dx

cos2(kx)
=

k

ω0
tan(kx),

where the integration constants are chosen to make the system symmetric with
respect to the throat surface x = 0. Thus the metric is known completely.
In a more convenient radial variable, y = k tan(kx), the metric reads

ds2 =

(
dt − y

ω0
dϕ

)2

− dy 2

2ω2
0(k2 + y 2)

− dz2 − (k2 + y 2)
dϕ2

2ω2
0

.

The solution is regular in the whole range y ∈ R, but at y 2 > k2 we have
g33 > 0, hence the ϕ-circles are timelike and violate causality.
To match this metric to the flat one at some y = y0 identified with some
X = X0 in Minkowski space, we rescale time assuming

dt =
√
Pdτ, P = const < 1.

Then we can identify the time τ on Σ± with t from the external metric and
provide [γ] = 0. Now we can implement matching and try to satisfy the WEC.
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Example 2: Stiff perfect fluid. The WEC 21

Consider Σ± (y = ±y0 > 0, X = ±X0, X0 > 0).
The matching conditions [γ] = 0, [E ] = 0., [β] = 0 give, respectively,

P = 1− Ω2X 2, ΩX 2 =
y
√
P

ω0
,

k2 + y 2

2ω2
0

=
X 2

P
;

we assume ω0 > 0 and omit the index “zero” at X and y .
Independent parameters: P, k, ω0, y (internal metric), Ω,X (external).

These six parameters are connected by the above three equalities. We
choose as as independent parameters X = ±X0, y = ±y0, P < 1, so that

Ω =

√
1− P

X
, ω0 =

√
Py√

1− PX
, k2 = y 2 1 + P

1− P
,

The quantities a, b, c, d from the above WEC conditions are expressed as

a =
P3/2|y | − 1

P|X | , b =
1− |y |

√
P

|X | , c =
P − 1

P|X | , d =

√
Py ∓ 1± P

XP
√

1− P
.

It is directly verified that the WEC holds on both Σ± if y ≥ 2− P

P3/2
.

Important: We have y 2
0 < k2, hence y 2 < k2 in the whole internal region, and

there are no closed timelike curves.
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Example 3: Special anisotropic fluid. Solution 22

Consider an anisotropic fluid with

T ν
µ = ρ diag(1,−1, 1,−1) ⊕ T 0

3 = −2ρE e−2γ

(similar to a z-directed magnetic field in the static case, not directly extended
to E 6= 0). From ∇µTµ

1 = 0 it follows

ρ = ρ0 e
−2γ−2µ, ρ0 = const > 0,

The Einstein equations are solved using again the harmonic radial coordinate x :

r 2 ≡ e2β =
r 20

Q2(x2
0 − x2)

, e2γ = Q2(x2
0 − x2),

e2µ = e2mx(x0 − x)1−x/x0(x0 + x)1+x/x0 ,

E =
r0

2x2
0

[
2x0x + (x2

0 − x2) ln
x0 + x

x0 − x

]
, x0 :=

|ω0|
κρ0r0

, Q2 := κρ0r 20 ,

The coordinate x ranges from −x0 to x0. Integration constants: ω0, ρ0, r0, m,
plus introduced dimensionless.constants x0, Q.

The circular radius r →∞ as x → ±x0, ⇒ wormhole nature of the geometry,
but x = ±x0 are singularities: the Kretschmann invariant behaves as |x0 − x |−4.
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Example 3: Special anisotropic fluid. The WEC 23

Assume m = 0 (symmetry w.r.t. the throat x = 0). Matching at some
x = ±xs < x0 to Minkowski regions at X = ±Xs ⇒

X = r0, Q2(x2
0 − x2) = 1− Ω2X 2 =: P,

2x2
0

√
1− P = 2xx0 + (x2

0 − x2) ln
x0 + x

x0 − x
, (x = xs).

For [µ] = 0 we adjust the z scale ⇒ −gzz = M2 := e2µ(xs ) from the internal
metric. Denoting y = xs/x0 and L(y) = ln[(1 + y)/(1− y)], we have

M = M(y) =
(
1− y

)−(1−y)/2(
1 + y

)−(1+y)/2
,

P = P(y) = (1− y 2)
[
1− yL(y)− 1

4
(1− y 2)L2(y)

]
.

Then the quantities a, b, c, d in the WEC requirements are

a = [− e−α(β′ + µ′)] = − 1

P(y)
+

M(y)

x2
0

(
y

1− y 2
+

1

2
L(y)

)
,

b = [ e−α(β′ + γ′)] = 1,

c = [ e−α(γ′ + µ′)] = − 1

P(y)
+ 1 +

M(y)

x2
0

(
y

1− y 2
− 1

2
L(y)

)
,

d = −[ω] = −
√

1− P(y)

P(y)
± M(y)

x2
0 (1− y 2)

.
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Example 3: Special anisotropic fluid. The WEC — 2 24

Left: P(y). Middle: a(y) for x0 = 0.3, 0 : 4, 0 : 5, 0 : 75 (upside down).
Right: a(y) + c(y) for x0 = 0.3, 0.4, 0.5, 0 : 75 (upside down).

The expressions for a, b, c, d depend on two parameters, x0 and y , and a, b, c
are the same on Σ+ and Σ−, while d does not affect the results. Actually, if
a > 0 and a + c > 0, then WEC holds. It can be found that (see the figures)

The condition 0 < P(y) < 1, required by construction, holds for
0 < y < 0.564 (all numerical estimates are approximate);

a > 0 and a > c hold in a large range of x0 and y , for example,
x0 = 0.5, y ∈ (0.15, 0.47) and x0 = 0.3, y ∈ (0.05, 0.53).

a + c > 0 in almost the same range of the parameters, e.g,
x0 = 0.5, y ∈ (0.15, 0.38) and x0 = 0.3, y ∈ (0.05, 0.51).

Thus in a significant range in the parameter space (x0, y) our asymptotically
flat wormhole model completely satisfies the WEC. Also, gϕϕ < 0 between Σ−
and Σ+, hence the model does not contain closed timelike curves.
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Conclusion on rotating wormholes in GR 25
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