High-density nuclear symmetry energy extracted from observations of neutron stars and gravitational waves

Bao-An Li

Collaborators: Plamen G. Krastev, Harvard University Wen-Jie Xie, Texas A&M University-Commerce De-Hua Wen, South China University of Technology Naibo Zhang, Shandong University (Weihai)

Outline

- **Introduction: EOS of dense neutron-rich nuclear matter**
- **Goal:** to determine the high-density behavior of nuclear symmetry energy
- **Approach: Solving the neutron star inverse-structure problem: given an observable, find the necessary EOS(s)**
- **1.Exact Inversion in 3D: Inverting exactly the TOV equation in 3D EOS** parameter space
- **2.Statistical Inversion in Multi-D**: Bayesian inference of the Probability Distribution Functions (PDFs) of ALL EOS parameters
- **Conclusion:** E_{sym} below twice the saturation density is reasonably well constrained by the available radius data of canonical neutron stars from GW170817 and X-rays

Connecting Quarks with the Cosmos: <u>Eleven Science Questions for the New Century</u> National Research Council (2003)

- What is the dark matter?
- What is the nature of the dark energy?
- How did the universe begin?
- What is gravity?
- Are there additional spacetime dimensions?
- What are the masses of the neutrinos, and how have they shaped the evolution of the universe?
- How do cosmic accelerators work and what are they accelerating?
- Are protons unstable?
- Are there new states of matter at exceedingly high density and temperature?
- How were the elements from iron to uranium made?
- Is a new theory of matter and light needed at the highest energies?

Compact stars are natural laboratories to test some of these

Gravity-EOS Degeneracy in massive neutron stars

Strong-field gravity: GR or Modified Gravity?

Contents and stiffness of the EOS of super-dense matter At high-densities, cold neutron-rich nucleonic matter, the most uncertain part of the EOS is the nuclear symmetry energy besides possible phase transitions

W.A. Zajc, Nucl. Phys. A 967 (2017) 265 The QCD phase diagram

Fig. 1: A selection of representations of the QCD phase diagram in the (μ_B, T) plane.

Density

Empirical parabolic law of the EOS of cold, neutron-rich nucleonic matter

Single-nucleon (Lane) potential in isospin-asymmetric matter $U_{n/p}(k,\rho,\delta) = U_0(k,\rho) \pm U_{sym1}(k,\rho) + U_{sym2}(k,\rho) + U_{sym2}(k,\rho) + O(\delta^3)$ Isovector

According to the Hugenholtz-Van Hove (HVH) theorem:

$$E_{sym}(\rho) = \frac{1}{3} \frac{\hbar^2 k^2}{2m_0^*} |_{k_F} + \frac{1}{2} U_{sym,1}(\rho, k_F),$$

$$L(\rho) = \frac{2}{3} \frac{\hbar^2 k^2}{2m_0^*} |_{k_F} - \frac{1}{6} \left(\frac{\hbar^2 k^3}{m_0^{*2}} \frac{\partial m_0^*}{\partial k} \right) |_{k_F} + \frac{3}{2} U_{sym,1}(\rho, k_F) + \frac{\partial U_{sym,1}}{\partial k} |_{k_F} \cdot k_F + 3U_{sym,2}(\rho, k_F),$$

Kinetic

Nucleon effective mass in isospin symmetric matter $m_0^*(\rho, k) = \frac{m}{1 + \frac{m}{k^2L}} \frac{\partial U_0(\rho, k)}{\partial L}$

Neutron-proton effective mass splitting in neutron-rich matter

B.A. Li et al., Prog. in Part. and Nucl. Phys. 99 (2018) 29.

$$\begin{split} m_{n-p}^* &\approx 2\delta \frac{m}{\hbar^2 k_F} \left[-\frac{dU_{sym,1}}{dk} - \frac{k_F}{3} \frac{d^2 U_0}{dk^2} + \frac{1}{3} \frac{dU_0}{dk} \right]_{k_F} \left(\frac{m_0^*}{m} \right)^2 \\ &\approx 2\delta \left(\frac{M_s^*}{M} \right)^2 \left[\frac{M}{M_v^*} - \frac{M}{M_s^*} \right] \end{split}$$

Constraints on L as of 2013 based on 29 analyses of data

Bao-An Li and Xiao Han, Phys. Lett. B727 (2013) 276

> Predicted $E_{sym}(2\rho_0)$ scatters between approximately 15 to 100 MeV

N.B. Zhang and B.A. Li, EPJA 55, 39 (2019)

> $E_{sym}(2\rho_0)$ is most relevant for determining the radii of canonical neutron stars

What are the fundamental physics behind the symmetry energy?

$$U_{n/p}(k,\rho,\delta) = U_0(k,\rho) \pm U_{sym1}(k,\rho) + U_{sym2}(k,\rho) + O(\delta^3)$$

Isospin dependence of strong interactions and correlations

 $V_{T0} = V'_{np} \quad \text{(n-p pair in the T=0 state)} \qquad \begin{array}{l} \text{Tensor force due to pion and } \rho \text{ meson} \\ \text{exchange MAINLY in the T=0 channel} \\ V_{T1} = V_{nn} = V_{pp} = V_{np} \quad \text{(charge independence in the T=1 state)} \qquad \qquad V_{np}(T0) \neq V_{np}(T1) \end{array}$

In a simple interacting Fermi gas model:

Isospin-dependent correlation function

$$U_{sym}(k_F, \rho) = \frac{1}{4} \rho \int [V_{T1}(r_{ij}) f^{T1}(r_{ij}) - V_{T0}(r_{ij}) f^{T0}(r_{ij})] d^3r_{ij}$$

M.A. Preston and R.K. Bhaduri, Structure of the Nucleus, 1975
Isospin-dependent effective 2-body interaction

Major issues relevant to high-density E_{sym}, heavy-ion reactions and neutron stars

- Momentum dependence of the symmetry potential due to the finite-range of isovector int.
- Short-range correlations due to the tensor force in the isosinglet n-p channel
- Spin-isospin dependence of the 3-body force
- Isovector interactions of \triangle (1232) resonances and their spectroscopy (mass and width)
- Possible sign inversion of the symmetry potential at high momenta/density

Tensor force induced (1) high-momentum tail in nucleon momentum distribution and (2) isospin dependence of SRC

Theory of Nuclear matter H.A. Bethe Ann. Rev. Nucl. Part. Sci., 21, 93-244 (1971) Fermi Sphere Ċ

FIGURE 10. Two nucleons are initially in states B and C, having average momentum P and relative momentum k. When they interact they are shifted to states D and E outside the Fermi sphere, with relative momentum k'. If they are initially in a ³S state and interact by tensor force, then they are in a ³D₁ state in DE.

Reduced Kinetic symmetry energy of quasi-nucleons due to the isospin dependence of SRC

EOS of dense neutron-rich matter is a major scientific motivation of

- (1) High-energy rare isotope beam facilities around the world
- (2) Various x-ray satellites
- (3) Various gravitational wave detectors

Among the promising observables of high-density symmetry energy:

- $\frac{\pi}{\pi}$ + and n/p spectrum ratio, neutron-proton differential flow and correlation function in heavy-ion collisions at intermediate energies
- Radii of neutron stars
- Neutrino flux of supernova explosions
- Tidal polarizability in neutron star mergers, strain amplitude of gravitational waves from deformed pulsars, frequency and damping time of neutron star oscillations

Topical Issue on Nuclear Symmetry Energy edited by Bao-An Li, Àngels Ramos, Giuseppe Verde and Isaac Vidaña

EPJA, Vol. 50, No. 2 (2014)

How does the symmetry energy affect NS observables?

(1) For npe matter at beta equilibrium, its proton fraction is determined by the $E_{sym}(\rho)$:

$$x = 0.048 [E_{sym}(\rho) / E_{sym}(\rho_0)]^3 (\rho / \rho_0) (1 - 2x)^3$$

(2) The pressure in the npe matter at beta equilibrium: $\delta^{=1-2x}$

$$P(\rho,\delta) = \rho^2 \left[\frac{dE_0(\rho)}{d\rho} + \frac{dE_{\rm sym}(\rho)}{d\rho}\delta^2\right] + \frac{1}{2}\delta(1-\delta)\rho E_{\rm sym}(\rho)$$

(3) The crust-core transition density and pressure is determined by:

$$K_{\mu} = \rho^2 \frac{d^2 E_0}{d\rho^2} + 2\rho \frac{dE_0}{d\rho} + \delta^2 \left[\rho^2 \frac{d^2 E_{sym}}{d\rho^2} + 2\rho \frac{dE_{sym}}{d\rho} - 2E_{sym}^{-1} (\rho \frac{dE_{sym}}{d\rho})^2 \right]$$

How neutron rich the neutron stars can be?

Symmetry energy and the isospin asymmetry at beta equilibrium

$$E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0) + L(\frac{\rho - \rho_0}{3\rho_0}) + \frac{K_{\rm sym}}{2}(\frac{\rho - \rho_0}{3\rho_0})^2 + \frac{J_{\rm sym}}{6}(\frac{\rho - \rho_0}{3\rho_0})^3$$

The proton fraction x:

 $x = 0.048 [E_{sym}(\rho) / E_{sym}(\rho_0)]^3 (\rho / \rho_0) (1 - 2x)^3$

Effects of symmetry energy on the crust-core transition density

At the crust-core transition: Incompressibility in neutron stars at β equilibrium = 0

$$K_{\mu} = \rho^2 \frac{d^2 E_0}{d\rho^2} + 2\rho \frac{dE_0}{d\rho} + \delta^2 \left[\rho^2 \frac{d^2 E_{sym}}{d\rho^2} + 2\rho \frac{dE_{sym}}{d\rho} - 2E_{sym}^{-1} (\rho \frac{dE_{sym}}{d\rho})^2 \right]$$

Lattimer & Prakash, Phys. Rep., 442, 109 (2007)

Tidal deformability and radius from GW170817

B.A. Li et al., EPJA 55, 117 (2019)

Solving the NS inverse-structure problems by calling the TOV solver within 3 Do-Loops: Given an observable-→ Find ALL necessary EOSs

$$E_{0}(\rho) = E_{0}(\rho_{0}) + \frac{K_{0}}{2} \left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{2} + \frac{J_{0}}{6} \left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{3}, \qquad (2.15)$$

$$E_{\text{sym}}(\rho) = E_{\text{sym}}(\rho_{0}) + L\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right) + \frac{K_{\text{sym}}}{2} \left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{2} + \frac{J_{\text{sym}}}{6} \left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{3}(2.16)$$

$$E(\rho, \delta) = E_{0}(\rho) + E_{\text{sym}}(\rho) \cdot \delta^{2}$$

Fix the saturation parameters $E_0(\boldsymbol{\rho}_0)$, $E_{sym}(\boldsymbol{\rho}_0)$ and L at their most probable values currently known

Example:

N.B. Zhang, B.A. Li and J. Xu, The Astrophysical Journal 859, 90 (2018)

Sept. 16, 2019

Using 2.17 +/- 0.1 in their preprint

Restricted high-density EOS parameter space by (1) M_{max} >2.01, (2) 10.62< $R_{1.4}$ <12.83 km and (3) causality

Boundaries in the plane of high-density $\rm E_{sym}$ from crossings of any two conditions

With L fixed at its currently known most probable value of 60 MeV

Source	Reference
GW170817	(Abbott et al. 2018)
GW170817	(De et al. 2018)
QLMXBs	(Lattimer & Steiner 2014)
Imagined case-1	this work
Imagined case-2	this work
	Source GW170817 GW170817 QLMXBs Imagined case-1 Imagined case-2

Table 1. The radius $R_{1.4}$ data used in this work.

Posterior probability distribution $P(\mathcal{M}|D) = \frac{P(D|\mathcal{M})P(\mathcal{M})}{\int P(D|\mathcal{M})P(\mathcal{M})d\mathcal{M}}$, (Bayes' theorem) Likelihood: $P[D(R_{1,2,3})|\mathcal{M}(p_{1,2,\cdots 6})] = \prod_{j=1}^{3} \frac{1}{\sqrt{2\pi}\sigma_{\mathrm{obs},j}} \exp[-\frac{(R_{\mathrm{th},j} - R_{\mathrm{obs},j})^2}{2\sigma_{\mathrm{obs},j}^2}],$

Table 2. Prior ranges of the six EOS parameters used

Uniform prior distribution P(M) in the ranges of Bayesian inference of high-density E_{sym} from the radii R_{1.4} of canonical neutron stars in 6D EOS parameter space

Parameters	Lower limit	Upper limit (MeV)
K_0	220	260
J_0	-800	400
K_{sym}	-400	100
$J_{\rm sym}$	-200	800
L	30	90
$E_{\text{sym}}(\rho_0)$	28.5	34.9

Markov Chain Monte Carlo (MCMC) sampling of the posterior probability distribution functions (PDFs) of EOS parameters and their correlations

Posterior probability distribution function of 6 EOS parameters

<u>W.J. Xie and B.A. Li</u> <u>arXiv:1907.10741</u>, **APJ (2019) in press.**

Prior EOS parameter ranges:

fable 2.	Prior	ranges	of	the s	ix	EOS	parameters	used
----------	-------	--------	----	-------	----	-----	------------	------

Parameters	Lower limit	Upper limit (MeV)
K_0	220	260
J_0	-800	400
K_{sym}	-400	100
$J_{\rm sym}$	-200	800
L	30	90
$E_{sym}(\rho_0)$	28.5	34.9

Significant improvement of our exiting knowledge about the EOS of dense neutron-rich matter

Posterior EOS parameter inferred:

Most probable values of the EOS parameters and their 68%, 90% confide

Parameter (MeV)	68% boundaries	90% boundaries
J_0	-190^{+40}_{-40}	-190^{+80}_{-70}
K_0	222_{-0}^{+26}	222_{+35}^{-0}
$J_{ m sym}$	800^{+0}_{-360}	800^{+0}_{-600}
$K_{ m sym}$	-230^{+90}_{-50}	-230^{+160}_{-70}
L	39^{+19}_{-0}	39^{+28}_{-1}
$E_{ m sym}(ho_0)$	$34_{-4.8}^{+0.8}$	$34^{+0.8}_{-3.2}$

Effect of the observed maximum mass of neutron stars

from 1.97 to 2.17 (PSR J0740+6620)

Summary

- (1) Significant progress has been made in fixing nuclear symmetry energy below twice the saturation density
- (2) Truly multi-messenger approach to probe the EOS of dense neutron-rich matter = astrophysical observations + terrestrial experiments + theories + ...

Inverting the radius and tidal deformability in 3D symmetry energy parameter space at J₀=-180 MeV

N.B. Zhang and Bao-An Li, JPG 46, 014002 (2019)

Gravitational wave constraints on the high-density EOS parameter space

Causality surface: V_{sound}=C reached at the <u>central density of the most massive NS</u>

The absolutely maximum mass: The maximum mass on the causality surface $M_{TOV} = 2.4 M_{sun}$

N.B. Zhang and B.A. Li, EPJA 55, 39 (2019)

Constraining the radii of neutron stars with terrestrial experiments Bao-An Li and Andrew W. Steiner, Phys. Lett. B 642, 436 (2006)

APR: K_0 =269 MeV.

Radii of neutron stars inferred from observations (a)thermal emissions from quiescent neutron star low-mass X-ray binaries (qLMXBs) (b)photospheric radius expansion (PRE) bursts with H and/or He atmosphere models

Model	$R_{1.4}$ 90% confidence range
Alt/H+He QLMXB; $z = 0$ PRE	11.13 - 12.33
z = 0 PRE only	11.56 - 12.64
Base, QLMXB only	11.01 - 11.94
Alt, QLMXB only	10.62 - 11.50
H+He, QLMXB only	11.29 - 12.83
Alt/H+He, QLMXB only	11.24 - 12.59

J.M. Lattimer and A.W. Steiner, European Physics Journal A50, 40 (2014)

(C) Essentially ALL radii extracted from GW170817 by various groups are consistent with the prediction made in 2006 based on analyzing the terrestrial data

L.W. Chen, C.M. Ko and B.A. Li, Phys. Rev. Lett 94, 32701 (2005) Conclusion: The radii $R_{1.4}$ from GW170817 and X-rays improve our knowledge about the high-density E_{sym} significantly

How does the SRC affect nuclear symmetry energy $E_{sym}(\rho)$?

