Staggered fermions and the QCD phase diagram [2108.09213,2208.05398,2308.06105]

Szabolcs Borsányi, Zoltán Fodor, Matteo Giordano, Jana N. Guenther, Sandor D. Katz, Attila Pásztor, Chik Him Wong

University of Wuppertal

Regensburg, Sep 18, 2023 QCD on and off the lattice (and a few other topics)

The QCD phase diagram (2007)

The QCD phase diagram

 $\begin{array}{l} \mbox{Low μ_B: $T_{\rm freeze-out} \approx $T_c(\mu_B)$ [Braun-Munzinger, Stachel, Wetterich, nucl-th/0311005]} \\ \mbox{High μ_B: $T_{\rm freeze-out} < $T_c(\mu_B)$ [Floerchinger, Wetterich 1202.1671]} \\ \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The width of the transition extrapolated

To accurately obtain the width we use a proxy: $\sigma(\mu_B)$

$$\langle \bar{\psi}\psi \rangle (T_c \pm \sigma/2) = \langle \bar{\psi}\psi \rangle_c \pm \Delta \langle \bar{\psi}\psi \rangle/2$$

The width is basically independent of ${\rm Im}\hat{\mu}_B$ in our data. We extrapolate using a cubic polynomial.

Baryon fluctuations in two scenarios

Stephanov [0809.3450,1104.1627] : Non-monotonic high order fluctuations near a critical end point. Here : fourth cumulant $\langle B^4 \rangle_c$, normalized to the second cumulant $\langle B^2 \rangle_c$

FRG-Lattice assisted LEFT Pawlowski et al. [2101.06035] CEP = (93 MeV, 672 MeV)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Taylor coefficients

Taylor coefficients of the pressure

$$\frac{p(\mu_B)}{T^4} = \frac{p(0)}{T^4} + \frac{1}{2!} \frac{\mu_B^2}{T^2} \chi_2^B(T) + \frac{1}{4!} \frac{\mu_B^4}{T^4} \chi_4^B(T) + \frac{1}{6!} \frac{\mu_B^6}{T^6} \chi_6^B(T) + \dots$$

• These Taylor coefficients are equal to the Grand Canonical fluctuations

$$\left\langle B^{2} \right\rangle - \left\langle B \right\rangle^{2} = rac{1}{VT} rac{\partial^{2} \log Z(V, T, \mu_{B}, \mu_{Q}, \mu_{S})}{\partial {\mu_{B}}^{2}} = \chi_{2}^{B}$$

Higher fluctuations are the Taylor coefficients of lower fluctuations

$$\chi_2^B(\mu_B) = \chi_2^B(\mu_B = 0) + \frac{1}{2!} \frac{\mu_B^2}{T^2} \chi_4^B(\mu_B = 0) + \frac{1}{4!} \frac{\mu_B^4}{T^4} \chi_6^B(\mu_B = 0) + \dots$$

- Taylor coefficients can be used to reveal analytic structure of the thermodynamic potential
 - Repulsive interactions beyond ideal HRG
 - Searching the critical end point
- Hints for chiral O(4) universality

Taylor method

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n p / T^4}{(\partial \mu_B)^n} = \sum_{n=0}^{\infty} \frac{1}{n!} \chi_B^n$$

Sixth and eight order baryon fluctuations = $\mathcal{O}(\mu_B^6)$ and $\mathcal{O}(\mu_B^8)$ coefficients

$N_{\tau} = 8$		$N_{\tau} = 12$	
T[MeV]	#conf.	T[MeV]	#conf.
134.64	1,275,380	134.94	256,392
140.45	1,598,555	140.44	368,491
144.95	1,559,003	144.97	344,010
151.00	1,286,603	151.10	308,680
156.78	1,602,684	157.13	299,029
162.25	1,437,436	161.94	214,671
165.98	1,186,523	165.91	156,111
171.02	373,644	170.77	144,633
175.64	294,311	175.77	131,248

[L____] 0 CD 0001 00500]

Staggered actions are not equally good

New in Wuppertal: 4HEX staggered action with strongly reduced taste breaking.

Continuum extrapolation T = 145 MeV

Wuppertal-Budapest (2013–2023) 4stout results: [Wuppertal-Budapest [1507.04627]] BNL-Bielefeld (2011–...) HISQ results: [HotQCD [2107.10011]] Wuppertal-Budapest (2022–...) 4HEX results: [Wuppertal-Budapest QM2022]

Results are at a lattice size of LT = 4. The label "small volume" is LT = 3 in the plot, we will use LT = 2 for high order fluctuations.

4HEX continuum extrapolations of $\chi_B^n(T)$

Baryon Taylor coefficients

Focusing on $\chi_8^B(T)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Extrapolation approaches to $\mu_B^2 > 0$

Imaginary μ_B : numerical derivatives with some *lever arm*.

Taylor from $\mu_B = 0$: exact derivatives based on the tails of a distribution \mathbb{I} , \mathbb{I} , \mathbb{I} , \mathbb{I} , \mathbb{I}

Can we use lattice QCD to perform simulations at finite μ_B directly?

Reweighting to real μ_B

Using physical quark masses, 2 + 1 flavors, $N_t = 4$ [Fodor&Katz hep-lat/0402006]

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The overlap problem

Reweighting: Simulalate with parameters *A* and try to transform the distribution as if you simulated with parameters *B*.

The overlap problem

Reweighting: Costs explode with volume.

The sign problem

Sign problem: Large cancellations between positive and negative contributions of $\operatorname{Re}[\det M[U]]$.

Overlap problem: Problem solved.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How strong is the sign problem?

The complex phase of the fermion determinant is linked to a physical observable, the light quark density. [(See formula 5.2 of Allton et al hep-lat/0501030)]

The sign problem is weak for coarse lattices and at high temperatures.

Sign problem in the practice

Idea: sign quenched simulations:
$$\operatorname{Re}^{i\theta} = \underbrace{\pm}_{\operatorname{reweighting simulation}} \underbrace{|\operatorname{cos}(\theta)|}_{\operatorname{reweighting simulation}}$$

For a concrete case:

- 2-stout-staggered action,
- physical quarks with 2+1 flavors,
- $-16^3 \times 6$ lattice.

Direct (reweighted) simulations at $\mu_B > 0$

How far can we go in the chemical potential?

We compare in these plots for 140 MeV

- Taylor expansion from imaginary μ_B
- Fugacity expansion from imaginary μ_B
- Direct finite density simulations at 0 $<\mu_B \leq$ 380 ${\rm MeV}$

Direct = reweigting from sign quenched

_____

Direct simulations at $\mu_B > 0$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Simulation in two steps:

- **1** Simulate the real (sign quenched) action
- 2 Reweight each configuartion with the correct sign

Feasible as long as the sign problem is not too severe.

The earlier, tighter constraint of the overlap problem was removed.

Drawback: the simulation algorithm is more expensive (subject to research)

The chiral condensate (left) and the real quark density(right).

The plots show the matching imaginary μ_B results for comparison.

What are the limits of the direct simulations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• The most important limiting factor is **volume** and μ_B .

(The same is true for the $\mu_B = 0$ Taylor method.)

This is bad news for the CEP search

(finite volume scaling is very difficult)

- Below $\mu_B/T < 1$ the sign problem is weak.
- Deeper temperature and μ_B scans are feasible:

What do we learn from "direct" simulations?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Simulations are limited to small volumes.

 \rightarrow Explore phase diagram in a small volume

(1st step in a finite size scaling)

Extrapolations are available on larger volumes, too.
 Extrapolations are susceptible to a bias with respect to scheme

Strategy:

- Perform extrapolations in small volumes
- Perform "direct" simulations
- Check which scheme works

Comparison at fixed $T > T_c$

Let's look at the light quark density as a function of μ_B .

[Wuppertal-Budapest 2102.06660]

Direct points use sign qunched [Wuppertal-Budapest 2208.05398] (smallest error bars!)

2 Shift method uses the alternative scheme adapted to this setup

[Wuppertal-Budapest 2102.06660]

(good agreement with "direct" at next-to-leading order)

3 Taylor method is complemented with $\mu_B \neq 0$ points (good agreement with "direct" at next-to-next-to-leading order)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Full result vs. Taylor at $T < T_c$

Staggered simulations with three different reweighting schemes.

[Wuppertal-Budapest 2308.06105]

Golterman's argument

Golterman, Shamir, Svetitsky: [hep-lat/0602026]

$$(\det M)^{1/4} = \left[\prod_{i} \lambda_{i}\right]^{1/4} = \prod_{i,i+4,\dots} \left[\lambda_{i}\lambda_{i+1}\lambda_{i+2}\lambda_{i+3}\right]^{1/4} \neq \prod_{i} \lambda_{i}^{1/4}$$

- **1** Staggered fermions describe four flavors
- **2** At finite μ this brings in a complex rooting
- 3 At $\mu_q > m_\pi/2$ quartets spread the full complex plane, leaving the square root ambigous
- On fine lattices eigenvalues are structured as quartets of size O(a)
- **5** Quartets could be separated by the branch cut of the root even with fine lattices

The spectrum of the 4D staggered operator

At $\mu_B = 0$ we have $\lambda = m + ix$, with $x \in \mathbb{R}$.

The eigenvalues reach the cut at $\mu_q = m_\pi/2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Reweigted result vs. Taylor at $T < T_c$

Let's vary the pion mass.

Left: Baryon chemical potential; Right: Isospin chemical potential (phase quenched) [Wuppertal-Budapest 2308.06105]

Reweigted result vs. Taylor at $T < T_c$

Phase Quenched = Isospin chemical potential: 2nd order transition

[Son&Stephanov hep-ph/0005225, Brand&Endrdi 1712.08190]

The radius of convergence estimators clearly display this for the phase quenched case, but not for the case of the baryo-chemical potential.

[Attila Pásztor, Preliminary]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

Reweigted result vs. Taylor at $T < T_c$

Left: No rooting ; Right: chemical potential introduced to 2 flavors (rooting) [Wuppertal-Budapest 2308.06105]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

This is a cut-off effect

イロト イロト イヨト イヨト 二日

Reweighted result - Taylor result

- The unphysical effect diminises with decreasing lattice spacing
- The effect hints for an essential singularity: $\sim \exp(-C/\mu^2)$

Can we combine eigenvaules?

The unphysical behaviour is eliminated.

But this changes the definition of the chemical potential (can modify the theory away from the continuum).

What is the problem with real density simulations?

Expansion schemes

- Great progress
- \blacksquare Taylor, Im μ have limitations : extrapolations have unknown systematics
- \blacksquare A two-step reweighting procedure exists for simulating at real μ_B

Expensive, not impossible overlap problem has been mitigated

Staggered fermions are ill-defined at $\mu_q \lesssim m_\pi/2$ and $T < T_c$ Remedies:

- Non-trivial continuum limit
- Matching eigenvalues
- Non-staggered action

Candidate: minimally doubled fermions

Two flavor simulations with staggered-like chiral symmetry. Light quarks are not rooted.

backup

Higher order χ_B from imaginary μ_B

"Numerical derivatives" from $\mu_B^2 \leq 0$ simulations: [WB 1805.04445]

This structure is already known from chiral effecive models. [Friman et al 1103.351]]

Higher order χ_B in the simple model

Input: $\chi_2^B(T, \mu = 0)$ from Wuppertal-Budapest, and $\kappa = 0.02$ [see 1508.07599]:

Higher order χ_B in the simple model

Comparing the simple model with our lattice result:

Simple model describes lattice result surprisingly well.

How to calculate the severity of the sign problem

Simplification: The distribution of the phase of the determinant shall be Gaussian.

$$ho(heta) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{ heta^2}{2\sigma^2(\mu)}}$$

Phase Quenched: $\langle \cos \theta \rangle = e^{-\sigma^2(\mu)/2}$ Sign Quenched: $\langle \epsilon \rangle = \frac{\langle \cos \theta \rangle}{\langle |\cos \theta | \rangle} \approx 1 - \frac{4}{\pi} \left(\frac{2\sigma^2(\mu)}{\pi} \right)^{\frac{3}{2}} e^{-\frac{\pi^2}{8\sigma^2(\mu)}}$

Small μ : $\sigma^2(\mu) = -\frac{4}{9}\chi_{11}^{ud}(T)(LT)^3\hat{\mu}_B^2$

Large μ advantage of the sign quenched approach:

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○ ◆ ○

Staggered fermions at finite chemical potential

The staggered rooting is ill-defined at $\mu_B > 0$.

$$Z(T,\mu)=\int \mathcal{D} U\left[\det M\int \mathcal{D} U\operatorname{Re}\{\left[\det M(U,m_{ud},\mu)
ight]^{rac{1}{2}}\}\left[\det M(U,m_{s},0)
ight]^{rac{1}{4}}e^{-S_{g}\left[U
ight]}\,.$$

We can calculate the determinant up to a sign: $\pm \sqrt{\det M}$

To reinsert the missing sign is the whole point of the reweighting. Let Λ_i be the eigenvalues of the reduced matrix;

$$\det M(\mu) = e^{3V\hat{\mu}} \prod_{i=1}^{6V} \left[\Lambda_i - e^{-\hat{\mu}}\right] = \det M(0) \prod_{i=1}^{6V} \left[\frac{\Lambda_i e^{\hat{\mu}/2} - e^{-\hat{\mu}/2}}{\Lambda_i - 1}\right]$$

$$\sqrt[c]{\det M(\mu)} = \sqrt{\det M(0)} \prod_{i=1}^{6V} \sqrt[c]{\frac{\Lambda_i e^{\hat{\mu}/2} - e^{-\hat{\mu}/2}}{\Lambda_i - 1}}$$

This way $\sqrt[\mathbb{C}]{\det M(\mu^2)}$ is analytically connected to the real function $\sqrt{\det M(-\mu^2)}$.

Thermodynamics with the 4HEX action

- 4 steps of HEX smearing + DBW2 gauge action
- Physical point defined by $m_{\pi}/f_{\pi} = 1.0337$, $m_s/m_{\rm light} = 27.63$
- m_{light} tuned in the *a* range: 0.22...0.072 fm
- Thermodynamics runs: cca 80000 configurations / ensemble 10 Temperatures 130...175 MeV 3 lattice spacings 16³ × 8, 20³ × 10, 24³ × 12

Taste breaking

(smaller is better) show relative quadratic discretization error on M_{π}^2

(HISQ: thanks to Peter Petreckzy)

