Double parton scattering

M. Diehl

Deutsches Elektronen-Synchroton DESY

QCD on and off the lattice, 20 September 2023

HELMHOLTZ

Introduction Some theory ●○○○○ ○○○○○○○	Lattice	Summary	Backup
	0000	O	00000

Plan of this talk

- introduction to double parton scattering
- some theory results
- lattice studies

much of this work done in collaboration with Andreas and others in this room from 2011 to now

Introduction Some theory 0●00 000000	Lattice	Summary	Backup
	0000	O	00000

Hadron-hadron collisions

standard description based on factorisation formulae

cross sect = parton distributions \times parton-level cross sect

• factorisation formulae are for inclusive cross sections $pp \rightarrow A + X$ where A = produced by parton-level scattering, specified in detail X = summed over, no questions asked

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	O	00000

Hadron-hadron collisions

standard description based on factorisation formulae

cross sect = parton distributions \times parton-level cross sect

• factorisation formulae are for inclusive cross sections $pp \rightarrow A + X$ where A = produced by parton-level scattering, specified in detail X = summed over, no questions asked

spectator interactions

- · cancel in inclusive cross sections thanks to unitarity
- can be soft → part of underlying event
- ... or hard → multiparton scattering

• double parton scattering: $pp \rightarrow A_1 + A_2 + X$ with scales $Q_1, Q_2 \gg \Lambda$

have factorisation formula with double parton distributions

	Introduction Some theor	y Lattice	Summary	Backup
--	-------------------------	-----------	---------	--------

Single vs. double hard scattering

• example: two gauge bosons with transverse momenta \vec{q}_1 and \vec{q}_2

single scattering (SPS)

 $|\vec{q}_1|$ and $|\vec{q}_2| \sim$ hard scale Q $|\vec{q}_1 + \vec{q}_2| \ll Q$

double scattering (DPS) both $|\vec{q}_1|$ and $|\vec{q}_2| \ll Q$

▶ for transverse momenta $\sim \Lambda \ll Q$:

$$\frac{d\sigma_{\rm SPS}}{d^2 \vec{q}_1 \, d^2 \vec{q}_2} \sim \frac{d\sigma_{\rm DPS}}{d^2 \vec{q}_1 \, d^2 \vec{q}_2} \sim \frac{1}{Q^4 \Lambda^2}$$

but SPS populates larger phase space:

$$\sigma_{
m SPS} \sim rac{1}{Q^2} \ \gg \ \sigma_{
m DPS} \sim rac{\Lambda^2}{Q^4}$$

Introduction Some theory 0000 000000	Lattice	Summary	Backup
	0000	O	00000

Single vs. double hard scattering

• example: two gauge bosons with transverse momenta \vec{q}_1 and \vec{q}_2

single scattering (SPS)

 $ert ec{q}_1 ert$ and $ec{q}_2 ert \sim$ hard scale Q

 $|\vec{q}_1+\vec{q}_2|\ll Q$

- DPS can be enhanced by
 - small parton mom. fractions x because of parton luminosity roughly, $\sigma_{\rm SPS} \sim {\rm PDF}^2$ and $\sigma_{\rm DPS} \sim {\rm PDF}^4$
 - large rapidity separation ΔY between systems A_1 and A_2 large invariant mass of overall system \rightsquigarrow large x in SPS
 - parton type (quarks vs. gluons), coupling constants, etc.

double scattering (DPS) both $|\vec{q}_1|$ and $|\vec{q}_2| \ll Q$

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	0	00000

Many experimental observations at Tevatron and LHC

- ▶ like-sign W pairs
 - $\sigma_{\mathsf{SPS}} \propto \mathcal{O}(lpha_s^2)$ with ≥ 2 jets

observed by CMS in run 2

jets and gauge bosons:
 4 jets, γ + 3 jets, γ + 2 jets, W + 2 jets

▶ heavy flavours: $W + J/\Psi$, $J/\Psi + J/\Psi$, $J/\Psi + \Upsilon$, $\Upsilon\Upsilon$, double open charm, ...

Introduction	Some theory	Lattice	Summary	Backup
0000	•00000	0000	O	00000

DPS cross section: basic theory

$$\frac{d\sigma_{\mathsf{DPS}}^{A_1A_2}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} = \frac{1}{1+\delta_{A_1A_2}}\,\hat{\sigma}_1\,\hat{\sigma}_2\int d^2\boldsymbol{y}\,F_{a_1a_2}(x_1,x_2,\boldsymbol{y})\,F_{b_1b_2}(\bar{x}_1,\bar{x}_2,\boldsymbol{y})$$

$$\hat{\sigma}_i(x_i, \bar{x}_i) = \text{parton-level cross section for } a_i + b_i \rightarrow A_i$$

 $F_{a_1a_2}(x_1, x_2, y) = \text{double parton distribution (DPD)}$
 $y = \text{transverse distance between partons}$

• can extend $\hat{\sigma}_i$ to higher orders in α_s

tree-level formula from Feynman graphs and kinematic approximations Paver, Treleani 1982, 1984; Mekhfi 1985, ..., MD, Ostermeier, Schäfer 2011

► all-order factorisation proof for double Drell-Yan Manohar, Waalewijn 2012; Vladimirov 2016, 2017; MD, Buffing, Gaunt, Kasemets, Nagar, Ostermeier, Plößl, Schäfer, Schönwald 2011–2018 requires modification of above formula ~> more later

Introduction	Some theory	Lattice	Summary	Backup
0000	••••••	0000	O	00000

DPS cross section: basic theory

$$\frac{d\sigma_{\mathsf{DPS}}^{A_1A_2}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} = \frac{1}{1+\delta_{A_1A_2}}\,\hat{\sigma}_1\,\hat{\sigma}_2\int d^2\boldsymbol{y}\,F_{a_1a_2}(x_1,x_2,\boldsymbol{y})\,F_{b_1b_2}(\bar{x}_1,\bar{x}_2,\boldsymbol{y})$$

if assume $F_{a_1a_2}(x_1, x_2, \boldsymbol{y}) = f_{a_1}(x_1) f_{a_2}(x_2) G(\boldsymbol{y}) \Rightarrow$ pocket formula

$$\frac{d\sigma_{\rm DPS}^{A_1A_2}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} = \frac{\sigma_{\rm eff}^{-1}}{1+\delta_{A_1A_2}}\,\frac{d\sigma_{\rm SPS}^{A_1}}{dx_1\,d\bar{x}_1}\,\frac{d\sigma_{\rm SPS}^{A_2}}{dx_2\,d\bar{x}_2} \quad \text{ with } \sigma_{\rm eff}^{-1} = \int d^2 \boldsymbol{y}\;G(\boldsymbol{y})^2$$

- straightforward generalisation to N independent scatters underlies implementations in event generators PYTHIA, Herwig, Sherpa with adjustments for conserving momentum and quark number
- underlies bulk of phenomenological estimates (with some exceptions)
- ▶ fails when the assumption on $F_{a_1a_2}$ is invalid or when cross sect. formula misses important contributions \rightsquigarrow more later

Introduction	Some theory	Lattice	Summary	Backup
0000	OOOOO	0000	O	00000

Factorisation

generalise arguments for single to double Drell-Yan

basic steps:

- identify leading graphs and momentum regions (power counting)
- decouple collinear gluons → Wilson lines in DPD matrix elements
- decouple soft gluons \rightsquigarrow DPS oft factor (vev of 4×2 Wilson lines)
- show that Glauber gluons cancel (unitarity argument)

MD, D Ostermeier, A Schäfer 2011; MD, J Gaunt, P Plößl, A Schäfer 2015

Introduction	Some theory	Lattice	Summary	Backup
0000		0000	O	00000

Parton correlations

$$\frac{d\sigma_{\mathsf{DPS}}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} = \frac{\hat{\sigma}_1 \hat{\sigma}_2}{1 + \delta_{A_1 A_2}} \int d^2 \boldsymbol{y} \ F_{a_1 a_2}(x_1, x_2, \boldsymbol{y}) \ F_{b_1 b_2}(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

Factorisation formula includes parton correlations between

- \blacktriangleright x_1 , x_2 , and y
- spins (even in an unpolarised proton)
 - parton spin correlations can affect final state distributions in DPS gauge boson pairs: Manohar, Waalewijn 2011; Kasemets, MD 2012 double charm: Echevarria, Kasemets, Mulders, Pisano arXiv:1501.07291
 - evolution to high scales tends to wash out spin correlations unpol. densities evolve faster than polarised ones MD, Kasemets 2014
- colours
 - · technically more involved, not discussed in this talk

What do we know about DPDs?

Introduction Some theory	Lattice	Summary	Backup
	0000	O	00000

Properties of DPDs

▶ PDFs and DPDs are matrix elements of twist-two operators $\mathcal{O}_a(\boldsymbol{y}, \mu)$

 $f_a(x;\mu) \sim \langle p | \mathcal{O}_a(\mathbf{0};\mu) | p \rangle$ $F_{a_1a_2}(x_1, x_2, \boldsymbol{y};\mu_1,\mu_2) \sim \langle p | \mathcal{O}_{a_1}(\mathbf{0};\mu_1) \mathcal{O}_{a_2}(\boldsymbol{y};\mu_2) | p \rangle$

 \rightsquigarrow scale dependence described by DGLAP evolution equations

def. and evolution more complicated for DPDs with colour correlations M Buffing, MD, T Kasemets 2018; MD, F Fabry, A Vladimirov 2022; MD, F Fabry, P Plössl soon

sum rules for momentum and quark number

integrals of DPDs over x_2 and $\boldsymbol{y} \leftrightarrow \mathsf{PDF}$ at x_1

• provide constrains on model ansätze for DPDs

J Gaunt, W Stirling 2009; K Golec-Biernat et al 2015, 2022; MD, J Gaunt, D Lang, P Plößl, A Schäfer 2020 • formal proof: J Gaunt, PhD thesis 2012; MD, P Plößl, A Schäfer 2019

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	0	00000

The small \boldsymbol{y} limit

 \blacktriangleright for $y \ll 1/\Lambda$ can use operator product expansion

 $\mathcal{O}_{\mathsf{twist 2}}(\mathbf{0}) \mathcal{O}_{\mathsf{twist 2}}(\mathbf{y}) = C_2(y) \otimes \mathcal{O}_{\mathsf{twist 2}}(\mathbf{0}) + C_4(y) \otimes \mathcal{O}_{\mathsf{twist 4}}(\mathbf{0}) + \dots$

coefficient functions

 $C_2 \sim y^{-2}$ starts at $\mathcal{O}(\alpha_s)$ $C_4 \sim y^0$ starts at $\mathcal{O}(\alpha_s^0)$

- splitting contribution: splitting kernel \otimes PDF
- ▶ $\mathcal{O}(\alpha_s^2)$ kernels: MD, J Gaunt, P Plößl, A Schäfer 2019; MD, J Gaunt, P Plößl 2021
 - MD, R Nagar, P Plößl 2022

quark mass effects:

- intrinsic contribution
- ▶ subleading in $1/y^2$, but without α_s suppression
- expect stronger enhancement at small x1, x2

Introduction Some theory 0000 00000●	Lattice	Summary	Backup
	0000	O	00000

Splitting and double counting

▶ in small y limit: $F = F_{\sf spl} + F_{\sf intr}$ with $F_{\sf spl} \propto y^{-2}$ and $F_{\sf intr} \propto y^0$

in DPS cross section this gives

 $\int d^2y \left[F_{\rm spl}F_{\rm spl} + F_{\rm spl}F_{\rm intr} + F_{\rm intr}F_{\rm spl} + F_{\rm intr}F_{\rm intr} \right]$ 1v1 + 1v2 + 2v1 + 2v2

Introduction Some theory 0000 00000●	Lattice	Summary	Backup
	0000	O	00000

Splitting and double counting

▶ in small y limit: $F = F_{\sf spl} + F_{\sf intr}$ with $F_{\sf spl} \propto y^{-2}$ and $F_{\sf intr} \propto y^0$

in DPS cross section this gives

 $\int d^2y \left[F_{\rm spl}F_{\rm spl} + F_{\rm spl}F_{\rm intr} + F_{\rm intr}F_{\rm spl} + F_{\rm intr}F_{\rm intr} \right]$ 1v1 + 1v2 + 2v1 + 2v2

SPS (double box)

Introduction Some theory 0000 00000●	Lattice	Summary	Backup
	0000	O	00000

Splitting and double counting

▶ in small y limit: $F = F_{spl} + F_{intr}$ with $F_{spl} \propto y^{-2}$ and $F_{intr} \propto y^0$

in DPS cross section this gives

$$\int d^2y \left[F_{\rm spl}F_{\rm spl} + F_{\rm spl}F_{\rm intr} + F_{\rm intr}F_{\rm spl} + F_{\rm intr}F_{\rm intr} \right] 1v1 + 1v2 + 2v1 + 2v2$$

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	•000	O	00000

DPDs at large y: lattice studies

▶ Mellin moments of quark DPDs in x₁ and x₂ → matrix element ⟨p|J₁(y)J₂(0)|p⟩ with local operators J₁, J₂ = vector/axial vector/tensor current

▶ separation y between currents is spacelike \rightsquigarrow can evaluate matrix element in Euclidean spacetime at $y^4 = 0$

▶ subtlety: DPD matrix element includes integral $\int_{-\infty}^{\infty} d(py)$ but with $y^4 = 0$ have $|py| = |\vec{p} \cdot \vec{y}| \le |\vec{p}| |\vec{y}|$

 \rightsquigarrow need lattice simulations for large hadron momenta \vec{p} similar paradigm as for quasi-PDFs, quasi-TMDs, ...

- \Rightarrow can almost compute moments of DPDs on the lattice
- DPDs of the pion (2020) and the nucleon (2021)

G Bali, L Castagnini, MD, J Gaunt, A Schäfer, Ch Zimmermann, et al follow-up studies in progress with D Reitinger

Different direction: quasi-DPDs on the lattice (no simulations yet) M Jaarsma, R Rahn, W Waalewijn 2023; J-H Zhang 2023

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	O	00000

Lattice study for the nucleon

arXiv:2106.03541

use 990 configurations from CLS ensemble H102:

id	β	$a[\mathrm{fm}]$	$L^3 \times T$	κ_l	κ_s	$m_{\pi,K}[\text{MeV}]$	$m_{\pi}La$
H102	3.4	0.0856	$32^3 \times 96$	0.136865	0.136549339	355, 441	4.9

- all relevant combinations of two currents V, A, and T (unpolarised, longitudinally, and transversely polarised quarks)
- all relevant contractions, using various techniques

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	O	00000

Lattice study for the nucleon

arXiv:2106.03541

- good signal for all graphs except doubly disconnected one
- connected graphs C₁, C₂ generally dominate
 S₂ may become important at small y,

but in a region where have indications for discretisation effects

▶ following plots show sum of C₁ and C₂ contributions

Introduction 0000	Some theory 000000	Lattice 0000	Summary O	Backup 00000
Lattice study	for the nucleon		arXiv:2106.03541	
$\int\limits_{-\infty}^{\infty} d(t)$	$py) A_{qq'}(py, y^2) = \int dx$	$x_1 dx_2 F_{(q-\bar{q})(q'-\bar{q}')}$	$(x_1, x_2, oldsymbol{y})$	

following plots show matrix elements at py = 0 same qualitative behaviour seen for Mellin moments reconstructed with a model ansatz for py dependence

 $-\infty$

see clear difference in y dependence between different flavours

 $A_{qq'}$, $p \cdot y = 0$, flavor comparison

incompatible with ansatz $F_{a_1a_2}(x_1, x_2, y) = f_{a_1}(x_1) f_{a_2}(x_2) G(y)$ needed for DPS pocket formula

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	000	O	00000
Lattice study $_{\infty}$	for the nucleon		arXiv:210	6.03541

 $\int_{-\infty} d(py) A_{qq'}(py, y^2) = \int dx_1 \, dx_2 \, F_{(q-\bar{q})(q'-\bar{q}')}(x_1, x_2, y)$

spin dependence:

▶ find only small spin-spin correlations note: model with static SU(6) symmetric *uud* wave function predicts F_{∆u∆d}/F_{ud} = −2/3, F_{∆u∆u}/F_{uu} = +1/3

Introduction 0000	Some theory 000000	Lattice 000●	Summary O	Backup 00000
Lattice study	for the nucleon		arXiv:210	6.03541
∞				

 $\int_{-\infty} d(py) A_{qq'}(py, y^2) = \int dx_1 \, dx_2 \, F_{(q-\bar{q})(q'-\bar{q}')}(x_1, x_2, y)$

spin dependence:

▶ largest spin effect: correlation between transverse polarisation of one quark and direction of y, modulation $\propto (\vec{s}_q \times \vec{y}) \cdot \vec{p}$

Introduction 0000	Some theory 000000	Lattice 000●	Summary O	Backup 00000
Lattice study	y for the nucleon		arXiv:210	06.03541
$\int_{0}^{\infty} dt$	$(py) A_{qq'}(py, y^2) = \int dx$	$dx_1 dx_2 F_{(q-\bar{q})}$	$\bar{g}_{\bar{n}}(q'-ar{q}')(x_1,x_2,m{y})$	

spin dependence:

▶ largest spin effect: correlation between transverse polarisation of one quark and direction of y, modulation $\propto (\vec{s}_q \times \vec{y}) \cdot \vec{p}$

less clearly seen also for $d\bar{d}$

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	•	00000

Summary

- ▶ after $\gtrsim 1$ decade of theory work have detailed understanding of factorisation for double parton scattering
- factorisation formula including correlations between two partons (kinematics, distance, quantum numbers)
- many (but not all) perturbative calculations for DPS at NLO accuracy
- information on moments of DPDs from lattice QCD ~> flavour and spin dependence at large distances

Introduction Some theory Lattice Summary 0000 000000 0000 0	Backup 00000
---	-----------------

Backup slides

Introduction	Some theory	Lattice	Summary	Backup
0000		0000	O	O●000

Experimental investigations (incomplete)

b a compilation of $\sigma_{\rm eff}$ values see also similar overview in PoS DIS2019 (2019) 258

but cannot capture the physics of DPS in just one number σ_{eff}: cross sections, differential distributions

Double parton scattering

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	O	00000

Experimental investigations (incomplete)

- extraction of $\sigma_{\rm eff}$ can have significant theory uncertainties
- example: 4 jets, CMS, arXiv:2109.13822 different values for 13 GeV differ by adopted theory description of SPS

σ_{eff} measurements

Introduction	Some theory	Lattice	Summary	Backup
0000		0000	O	00000

Experimental investigations (incomplete)

more LHC studies:

run 1

• double open charm $(D^0, D^+, D_s^+, \Lambda_c^+)$	
and $J/\Psi+$ open charm	LHCb 2012
 the same in p-Pb collisions 	LHCb 2020
• $\Upsilon + \Upsilon \ (\sigma_{\text{eff}} \approx 2.2 \div 6.6 \text{mb})$	CMS 2016
• $W + J/\Psi$	ATLAS 2014, 2019
• $Z + J/\Psi$ (limit on $\sigma_{ m eff}$)	ATLAS 2014
• 4 leptons (limit on $\sigma_{\rm eff}$)	ATLAS 2018
• same-sign WW (limit on $\sigma_{\sf eff}$)	CMS 2017
► run 2	
• $J/\Psi + J/\Psi$ ($\sigma_{\text{eff}} \approx 8.8 \div 12.5 \text{mb}$)	LHCb 2016
• $Z + jets$	CMS 2021
 same-sign WW (observation) 	CMS 2019
• 4 jets (range of $\sigma_{\rm eff}$ values)	CMS 2022

Introduction	Some theory	Lattice	Summary	Backup
0000	000000	0000	0	00000

Feynman graphs: momentum vs. distance

► large (plus or minus) momenta of partons fixed by final state ~> equal in amplitude A and conjugate amplitude A*

- ► transverse parton momenta not equal in \mathcal{A} and in \mathcal{A}^* cross section $\propto \int d^2 \Delta F(x_i, \mathbf{k}_i, \Delta) F(\bar{x}_i, \bar{\mathbf{k}}_i, -\Delta)$
- ► Fourier trf. to impact parameter: $F(x_i, \mathbf{k}_i, \Delta) \rightarrow F(x_i, \mathbf{k}_i, \mathbf{y})$ cross section $\propto \int d^2 \mathbf{y} F(x_i, \mathbf{k}_i, \mathbf{y}) F(\bar{x}_i, \bar{\mathbf{k}}_i, \mathbf{y})$
- interpretation: y = transv. dist. between two scattering partons
 = equal in both colliding protons