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Plan of this talk

▶ introduction to double parton scattering

▶ some theory results

▶ lattice studies

much of this work done in collaboration with Andreas and others in this room

from 2011 to now
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Hadron-hadron collisions
▶ standard description based on factorisation formulae

cross sect = parton distributions× parton-level cross sect

▶ factorisation formulae are for inclusive cross sections pp → A+X
where A = produced by parton-level scattering, specified in detail

X = summed over, no questions asked

▶ spectator interactions

• cancel in inclusive cross sections thanks to unitarity
• can be soft ⇝ part of underlying event
• . . . or hard ⇝ multiparton scattering

▶ double parton scattering: pp → A1 +A2 +X with scales Q1, Q2 ≫ Λ

• have factorisation formula with double parton distributions
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Single vs. double hard scattering

▶ example: two gauge bosons with transverse momenta q⃗1 and q⃗2

q2

q1

SPS

single scattering (SPS)

|q⃗1| and |q⃗2| ∼ hard scale Q

|q⃗1 + q⃗2| ≪ Q

q2

q1

DPS

double scattering (DPS)

both |q⃗1| and |q⃗2| ≪ Q

▶ for transverse momenta ∼ Λ ≪ Q :

dσSPS

d2q⃗1 d2q⃗2
∼ dσDPS

d2q⃗1 d2q⃗2
∼ 1

Q4Λ2

but SPS populates larger phase space :

σSPS ∼ 1

Q2
≫ σDPS ∼ Λ2

Q4
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Single vs. double hard scattering

▶ example: two gauge bosons with transverse momenta q⃗1 and q⃗2

q2

q1

SPS

single scattering (SPS)

|q⃗1| and |q⃗2| ∼ hard scale Q

|q⃗1 + q⃗2| ≪ Q

q2

q1

DPS

double scattering (DPS)

both |q⃗1| and |q⃗2| ≪ Q

▶ DPS can be enhanced by

• small parton mom. fractions x because of parton luminosity
roughly, σSPS ∼ PDF2 and σDPS ∼ PDF4

• large rapidity separation ∆Y between systems A1 and A2

large invariant mass of overall system ⇝ large x in SPS

• parton type (quarks vs. gluons), coupling constants, etc.
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Many experimental observations at Tevatron and LHC

▶ like-sign W pairs

σSPS ∝ O(α2
s) with ≥ 2 jets σDPS ∝ O(α0

s)

W+W+ W+

W+

observed by CMS in run 2

▶ jets and gauge bosons:
4 jets, γ + 3 jets, γ + 2 jets, W + 2 jets

▶ heavy flavours:
W + J/Ψ, J/Ψ+ J/Ψ, J/Ψ+Υ, ΥΥ, double open charm, . . .
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DPS cross section: basic theory
q2

q1

x2

x̄2

x1

x̄1

dσA1A2
DPS

dx1 dx̄1 dx2 dx̄2
=

1

1+ δA1A2

σ̂1 σ̂2

∫
d2y Fa1a2 (x1, x2,y)Fb1b2 (x̄1, x̄2,y)

σ̂i(xi, x̄i) = parton-level cross section for ai + bi → Ai

Fa1a2(x1, x2,y) = double parton distribution (DPD)

y = transverse distance between partons

▶ can extend σ̂i to higher orders in αs

▶ tree-level formula from Feynman graphs and kinematic approximations
Paver, Treleani 1982, 1984; Mekhfi 1985, . . . , MD, Ostermeier, Schäfer 2011

▶ all-order factorisation proof for double Drell-Yan
Manohar, Waalewijn 2012; Vladimirov 2016, 2017; MD, Buffing, Gaunt,

Kasemets, Nagar, Ostermeier, Plößl, Schäfer, Schönwald 2011–2018

requires modification of above formula ⇝ more later
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DPS cross section: basic theory
q2

q1

x2

x̄2

x1

x̄1

dσA1A2
DPS

dx1 dx̄1 dx2 dx̄2
=

1

1+ δA1A2

σ̂1 σ̂2

∫
d2y Fa1a2 (x1, x2,y)Fb1b2 (x̄1, x̄2,y)

if assume Fa1a2(x1, x2,y) = fa1(x1) fa2(x2)G(y) ⇒ pocket formula

dσA1A2
DPS

dx1 dx̄1 dx2 dx̄2
=

σ−1
eff

1+ δA1A2

dσA1
SPS

dx1 dx̄1

dσA2
SPS

dx2 dx̄2
with σ−1

eff =

∫
d2y G(y)2

▶ straightforward generalisation to N independent scatters
underlies implementations in event generators PYTHIA, Herwig, Sherpa
with adjustments for conserving momentum and quark number

▶ underlies bulk of phenomenological estimates (with some exceptions)

▶ fails when the assumption on Fa1a2 is invalid
or when cross sect. formula misses important contributions ⇝ more later
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Factorisation
▶ generalise arguments for single to double Drell-Yan

S
H1

H2 H2

H1

B

A

⇒

H1

H2

H1

H2

B

A

S

▶ basic steps:

• identify leading graphs and momentum regions (power counting)
• decouple collinear gluons ⇝ Wilson lines in DPD matrix elements
• decouple soft gluons ⇝ DPS oft factor (vev of 4× 2 Wilson lines)
• show that Glauber gluons cancel (unitarity argument)

MD, D Ostermeier, A Schäfer 2011; MD, J Gaunt, P Plößl, A Schäfer 2015
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Parton correlations

dσDPS

dx1dx̄1 dx2dx̄2

=
σ̂1 σ̂2

1 + δA1A2

∫
d
2
y Fa1a2

(x1, x2,y)Fb1b2
(x̄1, x̄2,y) q2

q1

x2

x̄2

x1

x̄1

Factorisation formula includes parton correlations between

▶ x1, x2, and y

▶ spins (even in an unpolarised proton)

• parton spin correlations can affect final state distributions in DPS
gauge boson pairs: Manohar, Waalewijn 2011; Kasemets, MD 2012

double charm: Echevarria, Kasemets, Mulders, Pisano arXiv:1501.07291

• evolution to high scales tends to wash out spin correlations
unpol. densities evolve faster than polarised ones MD, Kasemets 2014

▶ colours

• technically more involved, not discussed in this talk

What do we know about DPDs?
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Properties of DPDs
▶ PDFs and DPDs are matrix elements of twist-two operators Oa(y, µ)

fa(x;µ) ∼ ⟨p |Oa(0;µ) |p⟩
Fa1a2 (x1, x2,y;µ1, µ2) ∼ ⟨p |Oa1 (0;µ1)Oa2 (y;µ2) |p⟩

⇝ scale dependence described by DGLAP evolution equations

def. and evolution more complicated for DPDs with colour correlations
M Buffing, MD, T Kasemets 2018; MD, F Fabry, A Vladimirov 2022;

MD, F Fabry, P Plössl soon

▶ sum rules for momentum and quark number

integrals of DPDs over x2 and y ↔ PDF at x1

• provide constrains on model ansätze for DPDs

J Gaunt, W Stirling 2009; K Golec-Biernat et al 2015, 2022;

MD, J Gaunt, D Lang, P Plößl, A Schäfer 2020

• formal proof: J Gaunt, PhD thesis 2012; MD, P Plößl, A Schäfer 2019
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The small y limit

▶ for y ≪ 1/Λ can use operator product expansion

Otwist 2(0)Otwist 2(y) = C2(y)⊗Otwist 2(0) + C4(y)⊗Otwist 4(0) + . . .

coefficient functions

C2 ∼ y−2 starts at O(αs)

C4 ∼ y0 starts at O(α0
s)

▶ splitting contribution: splitting kernel ⊗ PDF

▶ O(α2
s) kernels: MD, J Gaunt, P Plößl, A Schäfer 2019;

MD, J Gaunt, P Plößl 2021

▶ quark mass effects: MD, R Nagar, P Plößl 2022

▶ intrinsic contribution

▶ subleading in 1/y2, but without αs suppression

▶ expect stronger enhancement at small x1, x2
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Splitting and double counting

▶ in small y limit: F = Fspl + Fintr with Fspl ∝ y−2 and Fintr ∝ y0

▶ in DPS cross section this gives∫
d2y

[
FsplFspl + FsplFintr + FintrFspl + FintrFintr

]
1v1 + 1v2 + 2v1 + 2v2
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Splitting and double counting

▶ in small y limit: F = Fspl + Fintr with Fspl ∝ y−2 and Fintr ∝ y0

▶ in DPS cross section this gives∫
d2y

[
FsplFspl + FsplFintr + FintrFspl + FintrFintr

]
1v1 + 1v2 + 2v1 + 2v2

SPS (double box) twist 2 × twist 4

▶ scheme to remove double counting: MD, J Gaunt, K Schönwald 2017
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DPDs at large y: lattice studies

▶ Mellin moments of quark DPDs in x1 and x2

⇝ matrix element ⟨p|J1(y)J2(0)|p⟩
with local operators J1, J2 = vector/axial vector/tensor current

▶ separation y between currents is spacelike
⇝ can evaluate matrix element in Euclidean spacetime at y4 = 0

▶ subtlety: DPD matrix element includes integral
∞∫

−∞
d(py)

but with y4 = 0 have |py| = |p⃗ y⃗ | ≤ |p⃗ | |y⃗ |
⇝ need lattice simulations for large hadron momenta p⃗

similar paradigm as for quasi-PDFs, quasi-TMDs, . . .

⇒ can almost compute moments of DPDs on the lattice

▶ DPDs of the pion (2020) and the nucleon (2021)

G Bali, L Castagnini, MD, J Gaunt, A Schäfer, Ch Zimmermann, et al

follow-up studies in progress with D Reitinger

Different direction: quasi-DPDs on the lattice (no simulations yet)
M Jaarsma, R Rahn, W Waalewijn 2023; J-H Zhang 2023
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Lattice study for the nucleon arXiv:2106.03541

▶ use 990 configurations from CLS ensemble H102:

▶ all relevant combinations of two currents V , A, and T
(unpolarised, longitudinally, and transversely polarised quarks)

▶ all relevant contractions, using various techniques
C1

0 τ t

×
×

C2 ×
×

0

S1 ×
×

0

S2 D(pt× st)

×
×

D(st× st)

×
×

×
×

point source / propagator

stochastic source / propagator

propagator with HPE

×

sequential source / propagator
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Lattice study for the nucleon arXiv:2106.03541

▶ good signal for all graphs except doubly disconnected one

▶ connected graphs C1, C2 generally dominate
S2 may become important at small y,

but in a region where have indications for discretisation effects
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1
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▶ following plots show sum of C1 and C2 contributions
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Lattice study for the nucleon arXiv:2106.03541

∞∫
−∞

d(py)Aqq′(py, y
2) =

∫
dx1 dx2 F(q−q̄)(q′−q̄′)(x1, x2,y)

▶ following plots show matrix elements at py = 0

same qualitative behaviour seen for Mellin moments reconstructed with a model

ansatz for py dependence
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Lattice study for the nucleon arXiv:2106.03541

∞∫
−∞

d(py)Aqq′(py, y
2) =

∫
dx1 dx2 F(q−q̄)(q′−q̄′)(x1, x2,y)

▶ see clear difference in y dependence between different flavours

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.00

0.05

0.10

0.15

0.20
A[

fm
2 ]

Aqq′, p y = 0, flavor comparison

uu
ud
dd

4 6 8 10 12 14 16
y[a]

incompatible with ansatz Fa1a2(x1, x2,y) = fa1(x1) fa2(x2)G(y)
needed for DPS pocket formula
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Lattice study for the nucleon arXiv:2106.03541

∞∫
−∞

d(py)Aqq′(py, y
2) =

∫
dx1 dx2 F(q−q̄)(q′−q̄′)(x1, x2,y)

▶ spin dependence:

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.02

0.00

0.02

0.04

0.06

0.08

A[
fm

2 ]

channel comparison for ud, p y = 0

Aud

A u d

m y A du

m y A ud

A u d

m2 |y2|B u d

4 6 8 10 12 14 16
y[a]

0.4 0.6 0.8 1.0 1.2 1.4
y[fm]

0.00

0.05

0.10

0.15

0.20

A[
fm

2 ]

channel comparison for uu, p y = 0

Auu

A u u

m y A uu

A u u

m2 |y2|B u u

4 6 8 10 12 14 16
y[a]

▶ find only small spin-spin correlations

note: model with static SU(6) symmetric uud wave function predicts

F∆u∆d/Fud = −2/3, F∆u∆u/Fuu = +1/3
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Lattice study for the nucleon arXiv:2106.03541

∞∫
−∞

d(py)Aqq′(py, y
2) =

∫
dx1 dx2 F(q−q̄)(q′−q̄′)(x1, x2,y)

▶ spin dependence:
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m y A du
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m2 |y2|B u d
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Auu
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4 6 8 10 12 14 16
y[a]

▶ largest spin effect: correlation between transverse polarisation of one
quark and direction of y, modulation ∝ (s⃗q × y⃗ ) · p⃗
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Lattice study for the nucleon arXiv:2106.03541

∞∫
−∞

d(py)Aqq′(py, y
2) =

∫
dx1 dx2 F(q−q̄)(q′−q̄′)(x1, x2,y)

▶ spin dependence:
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y[a]

▶ largest spin effect: correlation between transverse polarisation of one
quark and direction of y, modulation ∝ (s⃗q × y⃗ ) · p⃗
less clearly seen also for dd
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Summary

▶ after >
∼ 1 decade of theory work have detailed understanding of

factorisation for double parton scattering

▶ factorisation formula including correlations between two partons
(kinematics, distance, quantum numbers)

▶ many (but not all) perturbative calculations for DPS at NLO accuracy

▶ information on moments of DPDs from lattice QCD
⇝ flavour and spin dependence at large distances
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Backup slides
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Experimental investigations (incomplete)

▶ a compilation of σeff values see also similar overview in PoS DIS2019 (2019) 258

ATLAS J/Ψ + J/Ψ (2016)
LHCb J/Ψ + J/Ψ (2011)

D0 J/Ψ + J/Ψ (2014)
D0 J/Ψ + Υ (2015)

LHCb Υ + D (2015)

ATLAS 4 jets (2016)
CDF 4 jets (1993)

ATLAS W + 2 jets (2013)
CMS W + 2 jets (2013)

D0 2 γ + 2 jets (2015)
D0 γ + 2 jets + b/c jet (2014)

D0 γ + 3 jets (2014)
D0 γ + 3 jets (2009)

reanalysis, Bahr et al (2013)
CDF γ + 3 jets (1997)

 0  5  10  15  20  25  30

 0  5  10  15  20  25  30

σeff [mb]

▶ but cannot capture the physics of DPS in just one number σeff :
cross sections, differential distributions
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Experimental investigations (incomplete)

▶ extraction of σeff can have significant theory uncertainties

▶ example: 4 jets, CMS, arXiv:2109.13822

different values for 13 GeV differ by adopted theory description of SPS

3 + CP5→PW NLO 2

2 + CP5→PW NLO 2

2 + CP5→MG5 NLO 2

2,3,4 + CP5→MG5 LO 2

H7 + CH3

P8 + CP5

 4jets (13 TeV)CMS

 4jets (7 TeV)CMS
Eur.Phys.J.,C76(3):155,2016.

 4jets (7 TeV)ATLAS
JHEP,11:110,2016

 4jets (1.96 TeV)CDF
Phys.Rev.D,47:4857-4871,1993

 4jets (0.63 TeV)UA2
Phys.Lett.B,268(1):145-154,1991

 [mb]effσ
0 5 10 15 20 25 30

 measurementseffσ
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Experimental investigations (incomplete)

more LHC studies:

▶ run 1

• double open charm (D0, D+, D+
s ,Λ

+
c )

and J/Ψ+ open charm LHCb 2012

• the same in p-Pb collisions LHCb 2020

• Υ+Υ (σeff ≈ 2.2÷ 6.6mb) CMS 2016

• W+ J/Ψ ATLAS 2014, 2019

• Z + J/Ψ (limit on σeff) ATLAS 2014

• 4 leptons (limit on σeff) ATLAS 2018

• same-sign WW (limit on σeff) CMS 2017

▶ run 2

• J/Ψ+ J/Ψ (σeff ≈ 8.8÷ 12.5mb) LHCb 2016

• Z + jets CMS 2021

• same-sign WW (observation) CMS 2019

• 4 jets (range of σeff values) CMS 2022
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Feynman graphs: momentum vs. distance

q2

q1

k1 − 1
2∆

k̄1 − 1
2∆̄ k̄1 +

1
2∆̄

k1 +
1
2∆k2 +

1
2∆ k2 − 1

2∆

k̄2 − 1
2∆̄k̄2 +

1
2∆̄

p

p̄

∆̄ = −∆

▶ large (plus or minus) momenta of partons fixed by final state

⇝ equal in amplitude A and conjugate amplitude A∗

▶ transverse parton momenta not equal in A and in A∗

cross section ∝
∫
d2∆F (xi,ki,∆)F (x̄i, k̄i,−∆)

▶ Fourier trf. to impact parameter: F (xi,ki,∆) → F (xi,ki,y)

cross section ∝
∫
d2y F (xi,ki,y)F (x̄i, k̄i,y)

▶ interpretation: y = transv. dist. between two scattering partons

= equal in both colliding protons
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