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Zeitschrift
Z. Phys. A - Atoms and Nuclei 322, 539-545 (1985) far Physik A Atoms

Hartree-Fock-calculation of parity-violation in cesium and NUCIe'

Springer-Verlag 1985
A. Schafer, B. Miller & W. Greiner © Spring g

We present a relativistic Hartree-Fock calculation of the parity violating E1-matrixelement
of the 6s<>7s transition in cesium. Our resultE1= —8.4-107'2 iea , for sin® 0 ,, = 0.22 is in

good agreement with the experimental value.

PHYSICAL REVIEW A VOLUME 40, NUMBER 12 DECEMBER 15, 1989

Prospects for an atomic parity-violation experiment in U%°*

A. Schafer, G. Soft, P. Indelicato, B. Miiller, and W. Greiner

Parity mixing of electron states should be extremely strong for heliumlike uranium. We calculate
its size and discuss whether it could be determined experimentally. We analyze one specific scheme
for such an experiment. The required laser intensities for two-photon spectroscopy of the
2°P,-2'S, level splitting is of the order of 10'” W/cm?. A determination of parity mixing would
require at least 10*! W/cm?.

We are still waiting for the HITRAP facility at FAIR !
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Improved Bounds on the Dimension of Space-Time

Berndt Muller and Andreas Schafer

Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan, and Institut fuir Theoretische Physik,

Johann Wolfgang Goethe Universitit, D-6000 Frankfurt, Germany'®
(Received 26 August 1985)

We treat the perihelion shift of the planetary motion and the Lamb shift in hydrogen in an arbi-
trary number of space dimensions. Comparison with experimental data shows that the deviation
from dimensionality four of space-time is less than 10~? and 3.6 x 10~ !, respectively, on the length
scales associated with these phenomena.

Our result was cited in the next edition of the Review of Particle Properties



Physics Letters B

Volume 143, Issues 4-6, 16 August 1984, Pages 323-325

ELSEVIER

Electric and magnetic polarizability
of the nucleon in the MIT bag model

A. Schdfer, B. Miiller, D. Vasak 1, W. Greiner

The electric and magnetic polarizabilities of the proton and neutron are
calculated in the framework of the MIT bag model. Neglecting vacuum-
polarization we get aj = a, = 10.8 x 107 fm?, B, = 2.3 x 107 fm> and j3, =
1.5 x 107* fm?3, in good agreement with experiment. The difficulties in
treating the vacuum-polarization consistenly are discussed.

Physics Letters B

Volume 230, Issues 1-2, 26 October 1989, Pages 141-148

The valence and strange-sea quark
spin distributions in the nucleon
from semi-inclusive deep inelastic
lepton scattering

Leonid L. Frankfurt, Mark I. Strikman, Lech Mankiewicz !, Andreas Schéfer,

Ewa Rondio, Andrzej Sandacz, Vassilios Papavassiliou

The insight that model building no longer suffices, if there exists a systematic method to rigorously
solve hadron structure in QCD, formed the basis for the hugely successful effort to form a world-class
Lattice-QCD group in Regensburg. Congratulations to all who contributed!



How do systems governed by QCD thermalize and how does entropy get created?

Entropy production in high-energy processes
Berndt Muller (Duke U.), Andreas Schafer (Regensburg U.) (Jun, 2003)
e-Print: hep-ph/0306309 [hep-ph]

Unpublished

We calculate the entropy produced in the decoherence of a classical field configuration and compare
it with the entropy of a fully thermalized state with the same energy. We find that decoherence alone

accounts for a large fraction of the equilibrium entropy

Decoherence and entropy production in relativistic nuclear
collisions

Rainer J. Fries, Berndt Muller, and Andreas Schafer
Phys. Rev. C 79, 034904 — Published 13 March 2009

Towards a Theory of Entropy Production in the Little and Big Bang

Teiji Kunihiro, Berndt Muller, Akira Ohnishi, Andreas Schafer

Progress of Theoretical Physics,Volume 121, Issue 3, March 2009, Pages 555-575,

ENTROPY CREATION IN RELATIVISTIC HEAVY ION COLLISIONS

International Journal of Modern Physics E | Vol. 20, No. 11, pp. 2235-2267 (2011)

BERNDT MULLER and ANDREAS SCHAFER

Gluon radiation

Husimi-Wehrl entropy

Review




But how to perform rigorous calculations in a QFT when the coupling is not weak ?

The AdS/CFT correspondence came to the rescue:

PHYSICAL REVIEW D 84, 026010 (2011)
Holographic thermalization

V. Balasubramanian,' A. Bernamonti,” J. de Boer,> N. Copland,2 B. Craps,2 E. Keski-Vakkuri,*”
B. Miiller,6 A. Schifer,” M. Shigemori,8 and W. Staessens>

Using the AdS/CFT correspondence, we probe the scale dependence of thermalization in strongly
coupled field theories following a sudden injection of energy via calculations of two-point functions,
Wilson loops, and entanglement entropy ind = 2,3,4. ........... For homogeneous initial
conditions the entanglement entropy thermalizes slowest and sets a timescale for equilibration that
saturates a causality bound over the range of scales studied.

Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum

Georg Maier,* Andreas Schifer® and Sebastian Waeber®¢ .
Quantum Kolmogorov-Sinai entropy

Published in: JHEP 01 (2022) 165 - e-Print: 2107.01300 [hep-th] saturates the MSS bound (/li < 27Z'T)




Classical theory of entropy growth:

Lyapunov exponents and KS entropy



(D) = S
Lyapunov exponents - KS entropy

m A constant growth rate of the observable entropy, i.e. the entropy measured after
coarse graining, is a characteristic feature of chaotic dynamical systems.

m Consider two evolutions of such a system starting from slightly different initial conditions

(x(ty), p(ty)) and (X(t,) + 6x(t,), p(t,) + Op(t,)). A dynamical system is chaotic if the
distance in phase space between the two systems grows exponentially: x(t)

D(1) =/ 1650) > + | 550) | = Dye™ t DY
0

m 4 is called the (largest) Lyapunov exponent. X(t) +x(t)

® More generally, one can construct a spectrum of modes around the original trajectory in
phase space and obtain the associated spectrum of Lyapunov exponents A,. The rate of

growth of the coarse grained entropy is known as the Kolmogorov-Sinai (KS) entropy h«.
It is given by

dS/dt = hyg= ) J
A4.>0
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Theory

Thermalization of a chaotic system

Depending on the size of initial fluctuations,
after some Iinitial period, the measurable
entropy of the system grows linearly with
time:

After a time 7, = S,,//kg, the entropy of

the system approaches the value of the
entropy in thermal equilibrium, and further

growth is impossible because the volume of

accessible phase space at fixed total energy

s finite. \/
This behavior can be calculated numerically

in the classical limit of field theory. initial
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Fluctuations: initial state dependent
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Lyapunov Spectrum SU(2)

Number of unstable modes with positive
Lyapunov exponents = number of dynamical
modes of the lattice gauge theory

0.30"
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0.20}
< 0.15]
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0.00"

Sum of all positive Lyapunov exponents
exhibits volume growth: Sks is extensive

[J. Bolte, BM, A. Schéfer, PRD 61 (2000) 054506}
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D =

Theory

How chaotic is QCD?

Maldacena, Shenker, and Stanford [JHEP 08 (2016) 106] argued that there is an

upper bound on Lyapunov exponents: A < 2zT, where T is the temperature reached
after equilibration.

Our numerical simulations for the SU(3) gauge theory found [PRD 52 (1995) 1260]
Ao = 0.53g°T
Which saturates the MSS bound when o, = g?ldr ~ 1.

Thermalization in QCD at realistic coupling may thus be about three times slower
than at infinitely strong coupling as realized in BH formation or AdS/CFT.

But this still gives a rather short thermalization time around 1 fm/c.

Next challenge: Compute entropy growth in the quantum lattice gauge theory.
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Quantum Chaos

SU(2) Lattice Gauge Theory



() = S
Thermalization / Hydrodynamization

Current description of rapid thermalization / hydrodynamization uses either semiclassical approximations
(kinetic theory) or holographic technigues: One method neglects potentially important quantum effects,
the other method describes a quantum field theory that differs from QCD. Can we do better?

How does apparent thermalization happen in a closed quantum system, when energy is conserved?
Time evolution of local operator expectation value in terms of energy eigenstates is:

(0)(t) = Tr[Op(t)] =Y (n|O[m)(m|p(0)[n)e'Fn=Em)t

n,m
After some time?

(O)mc(£) E = Tr(Hp)

Microcanonical ensemble average
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Eigenstate Thermalization Hypothesis (ETH)

For most non-integrable systems, matrix elements of “typical” local operators for “typical” energy
eigenstates can be represented as

—S(E)/2
(n|O|m) = (O)me(E)dpm + e 2 EV2 (B W) Ry E=(E,+E,)/2
Diagonal part close Correction suppressed Gaussian (?)
to microcanonical exponentially by random
ensemble average system size matrix
Spectral function decays with @
Deutsch, PRA 43, 2046 (1991) L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol,

Srednicki, PRE 50, 888 (1994) Adv. Phys. 65 (2016) 239 [1509.06411]




(D = S
From ETH to Thermalization

For large system and initial state with small energy variation, ETH leads to

(1) Long time average O = thermal expectation value (O) —> ergodic
(2) Fluctuations of (O)(¢) around O are exponentially small in system size

(3) Quantum fluctuations ~ thermal fluctuations

(4) Temporal correlation function
(n|O(t)0(0)[n) — (n|O(t)|n)(n|O(0)|n) ~ /Olwe‘i“”f65‘”/2If(E,w)\2

Where f(E, w) is related to the spectral function (depending on operator O)

The system, when observed through O, behaves like a system in thermal equilibrium.
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What must be demonstrated?

(O)mec(E)0nm + e_S(E)/Qf( W) Ry

Fundamental ETH relation: (n\0|m>

|
&
c.

* Discretize the continuum theory on a spatial lattice, choose boundary conditions
 Show that diagonal part is exponentially close to the microcanonical average

 Show that off-diagonal part is a (Gaussian) random matrix

e Show that the spectral function decays for large @

 Consider “physical”, i.e. gauge invariant, multiplicatively renormalizable operators

* Operators could be local or sufficiently smeared

» Demonstrate RG behavior for several g(a) when a — 0, to establish the continuum limit

« Demonstrate ETH for several system sizes for fixed g(a), to establish the infinite volume limit

17



(D = S

Theory

(2+1)-D SU(2) Lattice Gauge Theory

Kogut-Susskind Hamiltonian: H = ) Z(E?)Q 2 42 Z (n)

links plaquettes

(n) = Te[U (n, 9)UT(n + §,2)U(n + 2,9)U(n, 2)]

EX U(n,j)] = —6,;T°U(n, j)
[ES’, qu,)] — ifabCEf

Gauss’s law: Every vertex transforms as a
singlet for a state to be physical

Electric basis on links:  |J mr mpg)
Byrnes, Yamamoto, quant-ph/0510027

EZ|jmymp) = j(j + 1)imr mg)
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(2+1)-D SU(2) on Periodic Plaguette Chain

Each vertex has three links: singlet is
uniquely defined by the j values on

the three links

C b
Matrix elements between JENER
physical states (singlets) J:
expressed in 6j symbols J: final
d a
(Wl dsdalDljrgeisia) = [T (=17 T [0 V/(@a + D2Ja+ 1)
a=a,b,c,d a=1,2,3,4
[ G dv G2 V[ G g2 gz V[ de gz da L[ Ja s 1|
12 Jy Jy 12 J5 Je [ 1)2 Jy Js [ 12 S Js

Klco, Stryker, Savage, 1908.06935
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SU(@) with ... = 1/2 )

can be mapped onto spin chain
[X. Yao, 2303.14264] _

Project onto momentum eigenstates
—N/2 < k < N/2 for N plaquettes

N N
_Il_<p_1>_ B o7
__i__]" .
) [ (~05) 02

_"i" e T ]

aH = JZO‘ZO'Z_H—F}L ZJ + hy Z

J = —3a92/16, h, = 3a92/8, Ry

2 (ag?
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Plaquette Chain with ;.. = 1/2: Spectrum

, | | Restricted gap ratio distribution
Look at matrix elements in 3 energy windows

around peak with ca. 2000 eigenstates each min[éa, 5a_1]
O0<r, = <1
ma,x[éa, 5(1—1]
2500 ':' ' ] ] I ' ' ' ' ' ' ' ’ ' ' ' ' ! ' ' ' j _I ' ! ' | ' ! ! | ! ' ' | ! ' ' | ! ! ! l_
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Plaquette Chain with ;.. = 1/2: Diagonal Part

Consider 1-plaquette and 2-plaguette operators with ag2 = 1.2

1 n—+10
Proxy for microcanonical ensemble:  A;(n) = (n|O;|n) 57 Z (m|O;|m)
m=n—10
‘---.’\\ -
-2 e I-plaquette

~6x 107

1% 10-3 Exponential decay with /

3 x 1072 """\,___‘ 2-plaquette system size for N > 16
™ —2
32 X 10

11 12 13 14 15 16 17 18 19
N
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Well described by Gaussian
fel (Ev LU)2

0?2 = Tr[M?] =

p(E)

® 2<E<3
B 0<E<1

Spectral function at small |w | is well

described by a diffusive transport peak

NE, o) =

w? + b?

- C

v
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(D = S

Theory

] max

Cutoff Dependence and Convergence

Energy eigenvalues on N = 3 chain vs. J .,
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Take J,.x =

3.5, only use states

within 5% error from asymptotic

eigenenergy

values

8001
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S 400
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Ebner, BM, Schafer, Seidl, Yao, 2308.16202

Energy level spectrum for different jmax

I l 1 T I T

e fmax=3.5
i Jmax=3.0
- ® jmax=2.9
g’ =0.8a""
0 10 20 30 40 50
Eq

Select converged region 18 < E < 24
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N = 3 Chain with j_. =

Nearest-neighbor level statistics exhibits
GOE characteristics at g2a = 0.8

1/2: Spectrum

Wigner-Dyson
Distribution

\
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Mean restricted gap ratio shows GOE behavior
at weak coupling and Poisson at strong coupling
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W(lMaﬁl)

N =3 Chain with j .. = 7/2: Off-Diagonal Part

Off-diagonal elements of H,; are
Gaussian distributed

llllllllllllllllllllll
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Spectral function at small |w| shows a
diffusive transport peak with plateau
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Plateau disappears when system is non-chaotic
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Construct band matrix by dropping
deciphered matrix elements at time T

GOE measure AT

O =0' —Tr[0"]/d

2

Tr[(02)%])
(Tr[(Oz)%])

C

r_ |
A - d

For Gaussian Orthogonal Ensemble (GOE):

A =0.5

1
Omn

0.500—

B {<m0n>,

Eop, — By,
b, — By,
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(2+1)-D SU(2) on Honeycomb Lattice

Problem: on square lattice each vertex has four links and singlet is not uniquely defined by four j values

Solution: use honeycomb lattice

y Ho =2 MZZEQ

/\/\ n =1
~ Hinag = gaz 2 Z‘
~ ~ .
> X <J 1 “‘ ]z> between physical states

= product of six 6; symbols
BM, X. Yao, arXiv: 2307.00045



Boundary conditions

Periodic with periods Nx and Ny Closed (confining) with n-EF =0

Yy

[

A‘.‘
NN

(a) Parallelogram. (b) Triangle.

X

N,=5,N,=4 k. =k, = 1sector N=5



Hamiltonian constrained toj_ ., = 1/2

SU(2) with j_... = 1/2 expressed at Ising-like model r/lo\Y/ll\\u l l
BM,X Yao, 9307.00045 :/;):)\‘;’/(;1\:/;\2\‘; @rrereeeennneeeens > l l l
a’H:h+ZHZj' l\\//l\\//,l\\//l
(7'7.7) I I _GgO
_h‘H‘ZH (H;:—U +H:-J+1 +H’;|_+1J 1) .r/l()\\:/ll\ﬁu l l
(,9) I AN DU >
+h Z( 0.5 CZJUZJ \ 01/1\02/' T l l
(4d) i 1 0502,
I = (1 2 NG
1,9 ( _I_O )/ " 10 T i1 \: l l
B
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ETH Tests for Honeycomb Lattice with ;.. = 1/2

Diagonal matrix element test for local

operators (1 and 2 plaquettes) Off-diagonal matrix elements of H,

.. 1-plaquette 10-2- 2nd moment

e Plateau
=101
3 Exp. Fall-off
=
< 107°

10~

0 O 10 15
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(D = S
Summary Plans

We obtained clear and eextensive numerical evidence for ETH in (2+1)-D SU(2) lattice gauge theory.
We studied three cases by direct dialgonalization of the KS Hamiltonian:

(1) long chain withj ... = 1/2 /
(2) short chain with j .. = 7/2 and fully converged spectrum v/

(3) 2D honeycomb withj .. = 1/2 /

We found: * Wigner-Dyson level spacing statistics
» Clustering of diagonal matrix elements around micro canonical average

« Random matrix behavior of off-diagonal matrix elements
* Transport peak in spectral function at small |w|
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(D =
Future Plans

There are many possible directions for future research, e.qg.:

(1) (2+1)-D honeycomb with higher j_..
(2) (3+1)-D SU(2)

(3) SU(3) and include fermions

(4) Implementation on a quantum computer

Extent of further investigations will depend on availability of computing resources.
More efficient algorithms than full diagonalization of Hks must also be explored.
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Theory

Andreas at work

Danke fUr die lange, rege und fruchtbare Zusammenarbeit - There’s surely more to come!
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