What's next? Novel computational frontiers in QCD

Laurence G. Yaffe University of Washington

QCD on & off the lattice, Regensburg, September 2023

Computational frontiers

- Lattice gauge theory:
 - Bigger, faster, clever algorithms, ...
 - More fully controlled observables
 - Higher precision

Computational frontiers

Computational frontiers

- Numerical holography
 - Real-time dynamics: pre-hydrodynamic evolution in heavy ion collisions
 - Better justified than alternative weak-coupling models
 - Computationally challenging
- Large-NQCD
 - Nested classical limits
 - Requires decent truncation of infinite-dimensional phase space
 - Worth the trouble?

Heavy ion collisions

Shen & Heinz, 1507.01558

Heavy ion collisions

- Accessible quark-gluon plasma:
 - Low viscosity, $\eta/s \approx 0.1$
 - Effective temperatures $T_{eff} = \text{few } \times T_c$, not $\gg T_c$
 - Effective coupling $\propto 1/\ln(T_{\rm eff}/T_{\rm c})$ not at all small!
 - Substantial thermal masses, $m_{\rm th}/T = O(1)$, not $\ll 1$
 - Near-conformal, $(\epsilon 3p)/\epsilon$ small except very close to T_c
 - Accessible QGP = strongly coupled plasma, not weakly coupled!
- Color-glass condensate (IP-Glasma) modeling of initial state:
 - Beautiful picture of asymptopia: arbitrarily weak coupling, highly collinear gluon dynamics, elaborate hierarchy of scales, logarithmic evolution, ...
 - Asymptopia is very, very far from accessible QGP!
 - Instantaneous switch from weak-coupling to strong coupling (fluid) description is inherently inconsistent!

Holographic modeling

Complementary model:

Early-stage QGP = strongly coupled, near-conformal non-Abelian plasma \approx strongly coupled, maximally supersymmetric ($\mathcal{N} = 4$) Yang-Mills plasma

> hot QCD $\mathcal{N} = 4 \text{ SYM}$

- non-Abelian plasma non-Abelian plasma
- neutral fluid hydro neutral fluid hydro
- weak dependence on $N_{\rm c}$
- strongly coupled

- weak dependence on $N_{\rm c}$
- fixed, arbitrary coupling
- conformal near-conformal prior to hadronization
- Use gauge/gravity duality to solve (honestly) pre-hydrodynamic evolution of initial states in strongly coupled $\mathcal{N} = 4$ SYM which resemble real colliding nuclei

Holographic modeling

- Large *N*, strong coupling dynamics of $\mathcal{N} = 4$ SYM correctly described by classical 5D asymptically-AdS gravitational dynamics
- Solve gravitational dynamics to model early stage heavy-ion collisions:
 - Incoming projectile energy density = realistic model of nuclear energy density, Lorentz contracted ($\gamma = O(100)$). Uniquely determines bulk geometry corresponding to incident projectile.
 - Superpose well-separated projectiles, transform to infalling coordinates
 gravitational initial data.
 - Solve 5D Einstein equations with asymptotically-AdS boundary conditions & extract boundary stress-energy tensor $\langle T^{\mu\nu} \rangle$.
 - Evolve to onset of hydrodynamic regime, holographic $\langle T^{\mu\nu} \rangle \Rightarrow$ initial data for further hydrodynamic evolution.
- Earlier work: planar collisions, smooth projectiles, "pixel-by-pixel" phenomenology w. Paul Chesler, Berndt Müller, Andreas Schäfer, Sebastian Waeber

Gravitational dynamics

- Einstein GR = complicated, coupled 5D PDEs! But feasible:
 - Infalling coordinates **>** nested linear equations

Spectral methods => allow relatively coarse numerical grid

- work w. Sebastian Waeber 2206.01819, 2211.09190
- Transverse derivative expansion \Rightarrow simplifies equations, O(10) speed-up & memory reduction

Gravitational dynamics

- Localized collisions, work to-date:
 - Mathematica implementation on multi-core workstation w. 128 Gb memory & unified memory architecture
 - Spectral methods > long-range derivative discretizations, large matrices
 - Running time \approx few weeks
- Needed improvements:
 - Faster! Plug-in module for use with hydro codes
 - Coding in C++?
 - Efficient implementation on distributed clusters? GPUs?
 - Great opportunity for someone with computational skills looking for new challenge!

Large-NQCD

- Planar diagrams dominate
- Vanishing meson & glueball widths
- Scattering amplitudes ~ $(1/N)^{\# \text{ particles} 2}$
- Baryons ~ solitons
- Factorization: $\langle AB \rangle \rightarrow \langle A \rangle \langle B \rangle$ for suitable observables
- Volume independence in confining phase
- Closed algebraic equations for Wilson loop expectations Migdal & Makeenko '79

$$W_{\Gamma} \equiv \left\langle \frac{1}{N} \operatorname{tr} \mathscr{P} e^{\phi_{\Gamma} A \cdot dx} \right\rangle \qquad \qquad W_{\Gamma} = \sum_{\Gamma'} a_{\Gamma}^{\Gamma'} W_{\Gamma'} + \sum_{\Gamma', \Gamma''} b_{\Gamma}^{\Gamma' \Gamma''} W_{\Gamma'} W_{\Gamma''}$$

Large-NQCD

• Large-*N* limit = classical limit

LGY '82

- Large N coherent states { |u⟩} = coadjoint orbit of ∞-dim Lie group = classical phase space
- "Decent" quantum operators \rightarrow classical observables: $a(u) = \lim_{N \to \infty} \langle u | A | u \rangle$
- Vanishing overlaps: $\langle u | u' \rangle \sim e^{-N^2 f(u,u')} \Rightarrow$ factorization

$$\lim_{N \to \infty} \langle u | AB | u \rangle = \langle u | A | u \rangle \langle u | B | u \rangle = a(u) b(u)$$

• Classical action: $S_{cl}[u(t)] \equiv \lim_{N \to \infty} \frac{1}{N^2} \int dt \langle u | i\partial_t - \hat{H} | u \rangle$

➡ ground state properties, spectrum, scattering amplitudes, ...

- Fundamental representation quarks **>** nested classical limits
 - $O(N^2)$ action = gluon dynamics, subleading O(N) action = fermion dynamics

II

Numerical solution of $N = \infty$ QCD?

- Multiple approaches:
 - Solve Euclidean loop equations ➡ Wilson loop expectation values
 - Minimize Euclidean free energy *F*[ρ] ≡ *E*[ρ] − *TS*[ρ] within restricted space of factorizing "coherent" density matrices {ρ[{*W*_Γ}]} ➡ Wilson loop expectations & correlators
 - Minimize classical Hamiltonian $h_{glue}(u) \equiv \lim_{N \to \infty} N^{-2} \langle u | \hat{H} | u \rangle \Rightarrow$ equal time Wilson loop expectations, then:
 - expand $S_{cl}[u]$ about minimum, small oscillation frequencies \Rightarrow glueball masses, ...
 - minimize $h_{\text{quark}}[v; u] \equiv \lim_{N \to \infty} \frac{1}{N} \langle u, v | \hat{H}_{\text{quark}} | u, v \rangle$ over fermion coherent states \Rightarrow fermion bilinear expectations
 - expand associated $N = \infty$ fermion classical action \Rightarrow meson masses, scattering amplitudes
- All approaches require truncation of infinite dimensional space to some finite dimensional approximation, e.g., $W_{\text{big complicated loop}} \approx f[\{W_{\text{smaller loops}}\}]$

Numerical solution of $N = \infty$ QCD?

- "Naive" truncation explored in mid 80's: set all but selected loops to zero
- Better truncation schemes needed, e.g, factorization of self-intersecting loops, including loops with one or two electric field insertions
- Tricky programming to make efficient: loop decomposition, canonicalization, commutation of loops w. *E*-field insertions
- Is it worth the trouble?
 - Just for large-*N* Wilson loop expectations maybe not?
 - But to do meson (& glueball) spectra, decay widths, ...?
- Great opportunity for someone with excellent programming skills looking for new challenge!

Conclusion

- Want to explore new directions?
- Don't want to follow the crowd?
- Sign-up today !!!