Conventional and exotic charmonia from lattice QCD

Sasa Prelovsek University of Ljubljana & Jozef Stefan Institute, Slovenia

(guest professor at Regensburg and member of SFB, 2016-2021)

QCD on and off the lattice, Regensburg University, 18th September, 2023

Sara Collins, Daniel Mohler, M. Padmanath, Stefano Piemonte, SP 1811.04116, PRD 2019 : with **Andreas Schafer** and Simon Weishaeupl 1905.03506, PRD2019 2011.02542, JHEP 2021 2111.02934 : review

Outline : Conventional and exotic charmonia

- motivation
- glimpse of the results
- path to the results
- results (again)

comparison to exp, implications

••••

- challenges & how we addressed them
- challenges that remain open

Motivation Charmonium(like) states

majority of exotic hadrons contain cc

conventional hadrons

https://www.nikhef.nl/~pkoppenb/particles.html

Charmonium(like) states

 $J^{PC} = 0^{-+}$ 1^{--} 1^{+-} 0^{++} 1^{++} 2^{++} 2^{--} 3^{--}

4

PDG March 2022

Charmonium(like) system: experimental status (PDG) and summary of our lattice results

Mass (MeV)

Outline of results:

10

Path to results

Lattice setup

CLS ensembles with u/d, s dynamical quarks $a \approx 0.086 \text{ fm}, m_{\pi} = 280(3) \text{ MeV}$ L = 2.1 fm, 2.7 fm U101 H105 lat exp $m_{u/d} > m_{u/d}^{exp}$ $m_s < m_s^{exp}$ $m_u + m_d + m_s = m_u^{exp} + m_d^{exp} + m_s^{exp}$

two values of m_c (relativistic charm quarks)

	$m_D [{ m MeV}]$	$\frac{1}{4}(m_{\eta_c} + 3m_{J/\psi}) \text{ [MeV]}$
lat ($m_c \gtrsim m_c^{exp}$)	1927(1)	3103(3)
lat (m _c $ \lesssim m_c^{exp}$)	1762(1)	2820(3)
exp	1864.85(5)	$_{3068.6(1)}$

Quantity extracted from lattice: eigen-energy E_n

$$C_{ij}(t) = \left\langle 0 \right| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \left| 0 \right\rangle = \sum_{n} Z_{i}^{n} Z_{j}^{n*} e^{-E_{n} t}$$

- correlators evaluated using distillation method [Peardon et al, 2009]
- eigen-energies extracted using GeVP
- for strongly stable state well below threshold : $E_n(P=0) = m$
- in general : $E_n^{cm} \to T(E_n^{cm})$

Luscher's relation

• Initial step: consider charmonia to be strongly stable

 $\mathcal{O}: \quad \bar{c}(x)\Gamma c(x), \qquad \bar{c}(x)\Gamma \overset{\frown}{D}_{j}c(x), \qquad \bar{c}(x)\Gamma \overset{\frown}{D}_{j}\overset{\frown}{D}_{k}c(x).$

(up to 30 interpolators in given irrep)

E Charmonia at rest $E_n(P=0) = m$

• Initial step: consider charmonia to be strongly stable

Charmonia with momentum p≠0: Challenge $E_n^{cm} = \sqrt{(E_n^{cm})^2 - P^2}$ Motivation to study p≠0: extraction of scattering matrix $E_n^{cm} \to T(E_n^{cm})$ Challenge: identify J^p of charmonium in flight

Symmetries: p≠0

cubic lattice

<u>C</u>: good <u>P</u>: NOT good

Rotations/reflections:

transformations that leave box and p invariant:

p=(0,0,1): group Dic₄, 8 elements

TABLE VII. Choice of representation matrices for the Dic₄ little group. I denotes the identify transformation, $R(\phi)$ denotes a rotation around the z-axis by ϕ and Π denotes a reflection in the yz plane $(x \to -x)$.

rrep	Ι	$R(\pi)$	$R(3\pi/2)$	$R(\pi/2)$	П	$R(\pi)\Pi$	$R(\pi/2)\Pi$	$R(3\pi/2)\Pi$

p=(1,1,0); group Dic₂, 4 elements

	-			
Irrep	Ι	$R(\pi)$	П	$R(\pi)\Pi$

irreps: good quantum numbers helicity: not good

 $ilde{\eta}$: good (only for λ =0 states)

The challenge to determine J^P

 $|\lambda| <= J$

 $\lambda = \frac{J \cdot \vec{p}}{}$

13

۲

32

3.4

24

L/a

 $\mathcal{O}: \ \bar{c}c, \bar{D}D$

En in scat. study aimed at scalars in A1

Taking strong decays into account

Extract resonances and (virtual) bound states from H₁ H₂ scattering

simple argument: next slide

Sasa Prelovsek Conventional and exotic charmonia from lattice

Relation between E and $\delta(E)$, T(E): 1D quantum mechanics

$$S(E) = e^{2i\delta(E)} = 1 + 2i \frac{2p}{E} T(E)$$

$$E \to T(E)$$

 $V \neq 0$: outside the region of potential

E=p²/2m

$$\Psi(x) = A \cos(p |x| + \delta) = \begin{cases} A \cos(p + \delta) & X > R \\ A \sin(-p + \delta) & \chi < -\frac{R}{2} \end{cases}$$

- this form already ensures $\psi(L/z) = \psi(-L/z)$
- the other BC: $\psi'(\lfloor lz) = \psi'(-\lfloor lz)$ this requires Ap sin $(p(\frac{1}{2})t\delta) = -Ap sin (-p(-\frac{1}{2})t\delta)$ $\rightarrow \psi'((lz) = 0$, $\min(p\frac{1}{2}t\delta) = 0$ $p\frac{1}{2}t\delta = mT$ $p=m\frac{2T}{L} - \frac{2}{L}\delta$

Charmonia with J^{PC}=1⁻⁻ and 3⁻⁻

from one-channel <u>D</u>D scattering

Charmonia with J^{PC}=1⁻⁻ and 3⁻⁻ from one-channel <u>D</u>D scattering

Charmonia with J^{PC}=1⁻⁻ and 3⁻⁻ from one-channel <u>D</u>D scattering

l=1 and $m_D \approx 1762$ MeV

Masses of charmonium resonances and bound states

$$M_{\rm av} = \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$$

$$m = m^{\rm lat} - M^{\rm lat}_{\rm av} + M^{\rm exp}_{\rm av}$$

Charmonium(like) states with J^{PC}=0⁺⁺ and 2⁺⁺ from coupled-channel scattering $D\bar{D} - D_s\bar{D}_s$

the only available coupled-channel study for charmonia with I=0

Charmonia with J^{PC}=0⁺⁺ and 2⁺⁺ from coupled-channel scattering $D\bar{D} - D_s\bar{D}_s$

Operators

$$\mathcal{O}^{\overline{c}c} = \left(\overline{c}\,\Gamma c\right)_{\vec{P}}$$

$$\mathcal{O}^{\overline{D}D} = \left(\overline{c}\,\Gamma_1 q\right)_{\vec{p}_1} \left(\overline{q}\,\Gamma_2 c\right)_{\vec{p}_2} \\ = \overline{D}(\vec{p}_1)D(\vec{p}_2)$$

 $\vec{P} = \vec{p}_1 + \vec{p}_2$ P: 0 (0,0,1) $2\pi/N_L$ (1,1,0) $2\pi/N_L$ $\mathcal{O}^{\overline{D}_{\mathbf{s}}} = (\overline{c} \Gamma_1 S)_{\vec{p}_1} (\overline{S} \Gamma_2 c)_{\vec{p}_2}$ $= \overline{D}(\vec{p}_1) D_{\mathbf{s}}(\vec{p}_2)$

NL=24,32

Energies of eigen-states E_n in irreps that contain J^{PC}=0⁺⁺,2⁺⁺

Sasa Prelovsek

Conventional and exotic charmonia from lattice

Challenge: determine coupled-channel scattering matrix

Challenge: parametrization of scattering matrix

.

$$\rho_i \equiv 2p_i/E_{cm}$$

$$s = E_{cm}^2$$

$$t(E_{cm}) = \begin{vmatrix} t_{12}(E_{cm}) & t_{12}(E_{cm}) \\ t_{12}(E_{cm}) & t_{22}(E_{cm}) \end{vmatrix} \qquad (t^{-1})_{ij} = \frac{2}{E_{cm} p_i^l p_j^l} (\tilde{K}^{-1})_{ij} - i \rho_i \delta_{ij}$$

$$\frac{\tilde{K}_{ij}^{-1}(s)}{\sqrt{s}} = a_{ij} + b_{ij}s$$

linear parametrization

for low and high energy regions

sheet I: $\text{Im}(\rho_D) > 0$, $\text{Im}(\rho_{D_s}) > 0$, sheet II: $\text{Im}(\rho_D) < 0$, $\text{Im}(\rho_{D_s}) > 0$, $(\rho_i = 2p_i/E_{\text{cm}})$ sheet III: $\text{Im}(\rho_D) < 0$, $\text{Im}(\rho_{D_s}) < 0$, sheet IV: $\text{Im}(\rho_D) > 0$, $\text{Im}(\rho_{D_s}) < 0$.

J^{PC}=2⁺⁺ : conventional resonance

D-wave (L=2, J^{PC}=2⁺⁺) $D\bar{D}
ightarrow D\bar{D}$ $\rho_{D} \mid t_{D\bar{D} \rightarrow D\bar{D}} \mid^{2}$ 3 3.90 3.95 4.00 4.05 3.85 4.10 4.15 4.20 Ecm [GeV] 0.01 $2m_{D_s}$ $2m_D$ 0.00 [-0.01 -0.02 -0.03 -0.03 -0.04 sheet I

sheet I sheet II sheet III sheet II

 $I^{PC} = 0^{++}$

 $I^{PC} = 1^{--}$ $J^{PC} = 2^{++}$

3.80

3.84

3.88 3.92

 $\operatorname{Re}(E_{cm})$ [GeV]

3.96

4.00

-0.05

2++ resonance ٠ $\Gamma \equiv g^2 p_D^{2l+1}/m^2$ $lat: m = 3973^{+14}_{-22} \text{ MeV} \quad g = 4.5^{+0.7}_{-1.5} \text{ GeV}^{-1}$ $\chi_{c2}(3930): m = 3923 \pm 1 \text{ MeV} \quad g = 2.65 \pm 0.12 \text{ GeV}^{-1}$ PDG

4.04

J^{PC}=0⁺⁺ : some expected and unexpected states found

$D\bar{D} - D_s\bar{D}_s$

Belle 2017 state near D_sD_s threshold coupling mostly to D_sD_s ٠

$$\frac{|c_{D\bar{D}}^{-}|}{|c_{D_s\bar{D}_s}^2|} = 0.02 \begin{array}{c} +0.02\\ -0.01 \end{array}$$

12 1

lat :
$$m-2m_{D_s}=-0.2 \ ^{+0.16}_{-4.9} \ {
m MeV} \ , \ \ g=0.10 \ ^{+0.21}_{-0.03} \ {
m GeV}$$

state near DD threshold ٠

3.88

 $Re(E_{cm})$ [GeV]

3.84

3.92

3.96

4.00

4.04

sheet I sheet I sheet II sheet II

sheet II

 $I^{PC} = 0^{++}$

 $I^{PC} = 2^+$

3.80

-0.05

Conventional and exotic charmonia from lattice

Charmonium(like) states: poles and masses

10

Charmonium(like) states: widths and masses

Possible interpretation of some near-threshold states:

a number of pheno studies Oset et al, 0612179 PRD, Wu, Molina, Oset, Zou, 1007.0573, PRL "molecules" attracted by V exchange Guo et al, 2101.01021,... I = 0 $\bar{c}q\bar{q}c$ J^P=0⁺ $\overline{D}D$ $\bar{D}_s D_s$ LHCb, 2210.15153, PRL D_s=cs \mathbf{D}_{s} D=cu Signals / (20 MeV) D X(3960) LHCb D 9 fb⁻¹ $Br(Dar{D})$ $\simeq 0.3$ $\overline{Br(D_s\bar{D}_s)}$ ϕ ho, ω D $\frac{4.6}{m(D_s^+D_s^-)}$ [GeV] <u>D</u>_s <u>D</u>_s D D D $\underline{D}_{s}D_{s}$ th. now support also from lattice $c\bar{c}uud$ th $\bar{D}\Sigma_c$ 800 D=cu D=cu D 600 ho, ω LHCb 400 Pc(4312)* 2019 200 Σ_c $\Sigma_c = udc$ $\Sigma_c = udc$ Σ_{c}

currently to challenging for lattice

4250 4300 4350

 $m(J/\psi p)$ [MeV]

4200

Sasa Prelovsek Conventional and exotic charmonia from lattice

Challenges, caveats, ...

see: Assumptions and simplifications (Section 5, 2011.02542, JHEP 2021)

- > caveat: lattice simulation at unphysical quark masses and single lattice spacing
- further channels:
- incorporated with interpolators, treated as decoupled: $J/\psi~\omega,~~D^{*}ar{D}^{*}$
- omitted $\eta_c \eta$
- charm annihilation omitted

Instead of conclusions

 $\bar{c}c$, $\bar{c}c\bar{q}q$ $(\bar{q}q = \bar{u}u + \bar{d}d, \bar{s}s)$ I = 0

 $\bar{c}c\bar{d}u$ I=1

this talk

further exciting studies with Regensburg group

 $ccd\bar{u}$

. . . .

Thanks to prof. Andreas Schafer for

involvement, support, effort, patience, enthusiasm, !

Backup

 $\bar{c}s\bar{s}c$ likely related to X(3915) / χ_{c0} (3930) / X(3960)

J^{PC}=0++

lat: $\frac{|c_{D\bar{D}}^2|}{|c_{D_s\bar{D}_s}^2|} = 0.02 \ ^{+0.02}_{-0.01}$

all three likely the same state currently named $\chi_{c0}(3914)$ in PDG

Sasa Prelovsek m(J/yw) (Gellog) nventional and exotic charmonia from lattice

$$(\Delta E^{\text{lat}}) = (E^{\text{lat}}) - (E^{\text{lat}}_{H_1(\vec{p}_1)}) - (E^{\text{lat}}_{H_2(\vec{p}_2)}),$$

$$(E^{\text{calc}}) = (\Delta E^{\text{lat}}) + (E^{\text{cont}}_{H_1(\vec{p}_1)}) + (E^{\text{cont}}_{H_2(\vec{p}_2)})$$