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Factorization of Hadronic Processes
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Perturbative Physics

Nonperturbative 
Parton PhysicsUniversal

Important inputs to collider physics!

Collins, et.al., ASDHEP (1989)

CalculaGng Parton Physics from LaJce QCD
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Parton Distribution Function
(Inclusive process)

probability density of finding a 
parton with momentum 
fraction 𝑥 out of the hadron
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Parton Physics on Lattice?
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Minkowski
Spacetime

Euclidean
Lattice

O
Not directly
calculable?

CalculaGng Parton Physics from LaJce QCD



Large Momentum Effective Theory
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Large 𝑃! 
Expansion
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Calculating Parton Physics from Lattice QCD



Size of Power Correction
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Linear power 
correc4on must 
be eliminated!

Not properly 
addressed in 
previous work

𝑃&~2GeV, Λ'()	 ≈ 300	MeV

Ji, et.al, NPB (2021)

Power Correction in 1/𝑃% Expansion



Why 1/𝑃! correction?
• Non-local operator: -𝑞 0 Γ𝑈 0, 𝑧 𝑞 𝑧

• Linearly divergent self-energy 𝛿𝑚 𝑎 ∼ @
A

• A heavy quark propagating with “pole mass” 𝛿𝑚 𝑎
• ℎ-(z) ∼ 𝑒./0(2)	⋅|&|

• What to subtract w/ linear divergence? 
• Pole mass of a “free” quark?
• Long range interactions contributing 𝒪(Λ'()) ambiguously

• ℎ! z ∼ ℎ"(z)𝑒#$	⋅ ' (𝒪(|,|-!"#)
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Beneke, PLB (1995)

Ji, et.al, PRL (2017)

Freedom to choose the scheme

Power Correction in 1/𝑃% Expansion

6𝑓 𝑥 + 𝒪
Λ&'(	

x	|𝑃%	|

Fourier Transform

Ji, et.al, NPB (2021)



Perturbative determination of 𝛿𝑚 𝑎

• In perturbaFon theory, 𝛿𝑚 = @
A
∑𝛼BCD@ 𝑎 𝑟C

• 𝑟9 ∼ 𝑛!
• A laIce perturbaFve expansion of 𝛿𝑚 𝑎  to 20th order
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Series is divergent for any 𝛼:

Bali, et al., PRD (2013)

Gerard	't	Hooft
1999	Nobel	Prize

Infrared renormalon is partly related to 
the strong coupling 𝛼'(𝑘) becoming non-
perturbative in the region 𝑘 ∼ 	Λ()*. 

Renormalon Divergence

Beneke, RMP (1998)

Power CorrecGon in 1/𝑃% Expansion

∫ 𝑑𝑘*𝐹(𝑘) ln 𝑘$ + ∼ 𝑛!

𝑘



Renormalon in matching coefficients

• 𝐶 𝑥, 𝑦, 𝜇, 𝑃<  is obtained by perturbatively calculate the same 
operator -𝑞 0 Γ𝑈 0, 𝑧 𝑞 𝑧 , thus also has the same ambiguity:

𝐶(CD@) ∼ 𝑛!
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Braun, et.al., PRD(2018)

Power CorrecGon in 1/𝑃% Expansion

Linear Divergence
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Remove IR ambiguity
• Regularizing infrared physics
• Explicit IR cut off: ∫D

E!" 𝑓 𝑘 𝑑𝑘 → ∫E#$
E!" 𝑓 𝑘 𝑑𝑘

• Resumming the series to all orders with some prescription:

M
#

+

𝛼'#,-𝑟# → /
.
𝑑𝑢 𝑒/0/2"M

#

+
𝑟#𝑢#

𝑖!

• Neutralize color charge of the heavy quark
• Non-perturbative determination of 𝛿𝑚 𝑎
• Depending on how to choose fitting parameters

• Truncate at low order?
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Very difficult to calculate

Seems impossible to know high 
order terms?

Applicable to laJce data

But we know the divergent part

Ayala, PRD (2019)
Ayala, PRD (2020)

Power Accuracy in 1/𝑃% Expansion

<ℎV 𝑧, 𝑃< → <ℎV 𝑧, 𝑃< , 𝜏
𝐶 𝑥, 𝑦, 𝜇, 𝑃< → 	𝐶 𝑥, 𝑦, 𝜇, 𝑃< , 𝜏

𝒪 z ΛWXY → 𝑚Z(𝜏)|𝑧|

Ambiguity is fixed 
to linear correction



Achieve Power Accuracy: Basic Idea

• OPE with twist-three accuracy

• Twist-3  ambiguities	regularized	on	both	sides,	ℎV 	and	𝐶[
• 𝑚Z 𝜏  matches schemes between renormalization of lattice data and 

regularization of the matching coefficients
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∼ 	𝑒,- . ⋅%ℎ0(𝑧)

Matching Coefficients

PDF moments

Power Accuracy in 1/𝑃% Expansion



Achieve Power Accuracy: Strategy
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Renormalize with 
scheme-dependent 

non-perturbaGve 
parameter 𝑚1 𝜏
𝑍 𝑎, 𝜏
∝ 	 𝑒(,- . 3-! 4 )⋅|%|

Define 𝜏	scheme:
Leading renormalon 

resummation
+ Extract 𝑚1 𝜏 :

Fitting to 
𝑃% = 0 

Lattce data

Matching 
Condition

Power Accuracy in 1/𝑃% Expansion



Extract 𝑚$ 𝜏  from fixed-order pert theory 
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ln
ℎQ 𝑧, 𝑃& = 0, 𝜇
𝐶D 𝑧, 𝜇R𝑧R

= 𝑐 +𝑚D 𝜏 𝑧 Too large 
uncertainty!

Power Accuracy in 1/𝑃% Expansion

Fixed-order truncation is not a good regularization method!
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Fixed-order TruncaJon
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Power Accuracy in 1/𝑃% Expansion

Perturbation Order

Size

Renormalon Series
Full Series

Finite Part

Results changes 
dramaXcally when 
including higher 
order terms

Minimal term 𝑛 ∼ 1/𝛼7
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Leading Renormalon ResummaJon
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Perturbation Order

Size

Renormalon Series
Full Series
Finite Part

Power Accuracy in 1/𝑃% Expansion

LRR resums the 
factorially growing 
part. 

The remaining part 
is convergent.

The scheme choice 
is invariant under 
scale variaXon.

Minimal term 𝑛 ∼ 1/𝛼7



Leading Renormalon Resummation
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Perturbation Order

Size

Renormalon Series
Full Series
Finite Part

Power Accuracy in 1/𝑃% Expansion

LRR resums the 
factorially growing 
part. 

The remaining part 
is convergent.

The scheme choice 
is invariant under 
scale variation.

Minimal term 𝑛 ∼ 1/𝛼7



How to resum the renormalon series?

• Borel transformation:
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Power Accuracy in 1/𝑃% Expansion

Divergent Series ↔ Poles in the Borel Plane

𝑅 = M
"34

𝑟" 𝛼'",-

𝐵 𝑅 (𝑡) =M
"

𝑟"
𝑛!
𝑡" , 𝑅̀ = /

4

,+
𝑑𝑡	𝑒/

&
2" 	𝐵[𝑅](𝑡) 

𝑡

𝑟9 ∼
𝑛!
𝑡D9
↔ 𝐵[𝑅](𝑡D) =0

<𝑅	 depends on the integral path (regularization schemes)

Beneke, RMP (1998)

Braun, et.al., PRD(2018)



tadpole

n

Large β$ approximation

• The only calculable diagrams to infinite order

• Not including all leading renormalon effects

• Introducing higher renormalons (higher power correcFons)
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Power Accuracy in 1/𝑃% Expansion

Bubble-chain diagrams



Beyond β$ approximation

• Leading renormalon series follow certain properties:
• The divergent rate is determined by the pole in Borel plane 𝑟9 ∼

U%
RV	

9
𝑛!

• The IR renormalon series is independent of UV renormalization

• We can infer the asymptotic form:
• When 𝑛 → ∞, invariant under the change of renormalization scheme/scale 
𝛼: → 𝛼:W , 𝛽 → 𝛽′
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Power Accuracy in 1/𝑃% Expansion

𝑟9 = 𝑁0𝜇
𝛽D
2𝜋	

9 Γ 𝑛 + 1 + 𝑏
Γ 1 + 𝑏

1 +
𝑏

𝑛 + 𝑏
𝑐X +

𝑏 𝑏 − 1
𝑛 + 𝑏 𝑛 + 𝑏 − 1

𝑐R +⋯

b = 8"
$	8!#

, c9 =
9

*	:	8!$
8"#

8!
− β$   all from 𝛽 functions 

Beneke, PLB (1995)

Determined from known 
series with the same 
renormalon at high orders

Pineda, JHEP (2001)
Bali, et.al., PRD (2013)



LRR Beyond β$ approximation

• Resumming the asymptoFc series:

• CorrecFng the perturbaFve results:

• CorrecFng the matching kernel:

26

Power Accuracy in 1/𝑃% Expansion



LRR improved perturbation theory
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𝐶1 𝑧, 𝜇$𝑧$ : ln ;% %,=&>1,%'"

"! %,9
:

■ Reduce the uncertainty 3~5 times from scale variation
■ Improve the convergence when going to higher order

Power Accuracy in 1/𝑃% Expansion
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Summary
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• Parton physics can be calculated from lattice QCD through large 
momentum expansion precisely

• Power correction is an important source of systematic uncertainty
• We propose the first systematic approach to achieve 1/𝑃&  accuracy
• The leading renormalon resummation reduces the scale variation and 

the convergence of perturbation theory.

• More solid determinaXon of the renormalon contribuXon
• GeneralizaXon to more complicated parton observables (polarized, GPD)
• Including more systemaXc uncertainXes

Outlook

Conclusion and Outlook

Summary



Thank you!
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