

Leading Power Accuracy in Lattice Calculation of Parton Distributions

Rui Zhang

(University of Maryland/Argonne National Laboratory)

LaMET2023, University of Regensburg, Germany July 24th, 2023

R. Zhang, J. Holligan, X. Ji, and Y. Su, PLB (2023)

Outline

Introduction

Leading Power Corrections in $1/|P_z|$ Expansion

Leading Power accuracy in $1/|P_z|$ Expansion

Conclusion and Outlook

Factorization of Hadronic Processes

Collins, et.al., ASDHEP (1989)

Important inputs to collider physics!

Factorization of Hadronic Processes

Collins, et.al., ASDHEP (1989)

Parton Physics on Lattice?

Not directly calculable?

Large Momentum Effective Theory

Quasi-PDF: $\tilde{f}(x, P_z) =$ $\int \frac{dz P_z}{2\pi} e^{ixz P_z} \langle P | \bar{q}(0) \gamma_t U(0, z) q(z) | P \rangle$

 $C(x, y, \mu, P_z) \otimes f(y, \mu)$

Power Correction in $1/P_z$ Expansion

Power Correction in $1/P_z$ Expansion

Why $1/P_z$ correction?

- Non-local operator: $\overline{q}(0)\Gamma U(0,z)q(z)$
- Linearly divergent self-energy $\delta m(a) \sim \frac{1}{a}$
 - A heavy quark propagating with "pole mass" $\delta m(a)$
 - $h^B(\mathbf{z}) \sim e^{-\delta m(a) \cdot |\mathbf{z}|}$

Ji, et.al, PRL (2017)

- What to subtract w/ linear divergence? Freedom to choose the scheme
- Pole mass of a "free" quark?
 - Long range interactions contributing $\mathcal{O}(\Lambda_{\rm QCD})$ ambiguously Beneke, PLB (1995)

•
$$h^{R}(z) \sim h^{B}(z)e^{\delta m \cdot |z| + \mathcal{O}(|z|\Lambda_{QCD})}$$

Fourier Transform

$$\tilde{f}(x) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{|x|P_z|}\right)$$
 Ji, et.al, NPB (2021)

- In perturbation theory, $\delta m = \frac{1}{a} \sum \alpha_s^{n+1}(a) r_n$
 - $r_n \sim n!$ Series is divergent for any α_s
- A lattice perturbative expansion of $\delta m(a)$ to ${\bf 20^{th}}$ order

1999 Nobel Prize

Renormalon Divergence

Infrared renormalon is partly related to the strong coupling $\alpha_s(k)$ becoming nonperturbative in the region $k \sim \Lambda_{\text{QCD}}$.

Beneke, RMP (1998)

Renormalon in matching coefficients $\tilde{f}(x, P_z) = C(x, y, \mu, P_z) \otimes f(y, \mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{x |P_z|}\right) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}\right)$

• $C(x, y, \mu, P_z)$ is obtained by perturbatively calculate the same operator $\overline{q}(0)\Gamma U(0, z)q(z)$, thus also has the same ambiguity: $C^{(n+1)} \sim n!$ Braun, et.al., PRD(2018)

Remove IR ambiguity

- Regularizing infrared physics
 - Explicit IR cut off: $\int_0^{\Lambda_{\rm UV}} f(k) dk \to \int_{\Lambda_{\rm IR}}^{\Lambda_{\rm UV}} f(k) dk$

Very difficult to calculate

• Resumming the series to all orders with some prescription:

Ayala, PRD (2019) Ayala, PRD (2020) $\sum_{i} \alpha_{s}^{i+1} r_{i} \rightarrow \int_{C} du \, e^{-u/\alpha_{s}} \sum_{i} \frac{r_{i} u^{i}}{i!}$ Seems impossible to know high order terms? But we know the divergent part

- Neutralize color charge of the heavy quark
 - Non-perturbative determination of $\delta m(a)$
 - Depending on how to choose fitting parameters
- Truncate at low order?

$$\begin{split} \tilde{h}^{R}(z,P_{z}) &\to \tilde{h}^{R}(z,P_{z},\boldsymbol{\tau}) \\ C(x,y,\mu,P_{z}) &\to C(x,y,\mu,P_{z},\boldsymbol{\tau}) \\ \mathcal{O}\big(|z|\Lambda_{\text{QCD}}\big) &\to m_{0}(\boldsymbol{\tau})|z| \end{split}$$

Applicable to lattice data

Ambiguity is fixed to linear correction

Achieve Power Accuracy: Basic Idea

- OPE with twist-three accuracy_{Matching} Coefficients $h^{R}(z, P_{z}, \mu, \tau) = \left(1 - m_{0}(\tau)z\right) \sum_{k=0}^{\infty} C_{k}\left(\alpha_{s}(\mu), \mu^{2}z^{2}\right) \lambda^{k}a_{k+1}(\mu) + \mathcal{O}(z^{2})$ PDF moments $= \sum_{k=0}^{\infty} \left[C_{k}\left(\alpha_{s}(\mu), \mu^{2}z^{2}\right) - zm_{0}(\tau)\right] \lambda^{k}a_{k+1}(\mu) + \mathcal{O}(z\alpha_{s}, z^{2}),$
- Twist-3 ambiguities regularized on both sides, h^R and C_k
- $m_0(\tau)$ matches schemes between renormalization of lattice data and regularization of the matching coefficients

Extract $m_0(\tau)$ from fixed-order pert theory

$$\ln\left(\frac{h^{R}(z, P_{z} = 0, \mu)}{C_{0}(z, \mu^{2}z^{2})}\right) = c + m_{0}(\tau)z$$

Fixed-order truncation is not a good regularization method!

Extract $m_0(\tau)$ from fixed-order pert theory

Fixed-order truncation is not a good regularization method!

Fixed-order Truncation

Fixed-order Truncation

Fixed-order Truncation

Fixed-order Truncation

Leading Renormalon Resummation

LRR resums the factorially growing part.

The remaining part is convergent.

The scheme choice is invariant under scale variation.

Leading Renormalon Resummation

LRR resums the factorially growing part.

The remaining part is convergent.

The scheme choice is invariant under scale variation.

How to resum the renormalon series?

• Borel transformation: $R = \sum_{n=0}^{\infty} r_n \alpha_s^{n+1}$

$$B[R](t) = \sum_{n} \frac{r_n}{n!} t^n, \qquad \tilde{R} = \int_0^{+\infty} dt \ e^{-\frac{t}{\alpha_s}} B[R](t)$$

Divergent Series \leftrightarrow Poles in the Borel Plane

 \tilde{R} depends on the integral path (regularization schemes)

Large
$$\beta_0$$
 approximation

tadpole

• The only calculable diagrams to infinite order

$$C_{\rm tp}(\alpha_s(\mu), z^2 \mu^2)|_{\rm PV} = \int_0^\infty du e^{-4\pi u/\alpha(\mu)\beta_0} \frac{2C_F}{\beta_0 u} \left(\frac{\Gamma(1-u)e^{\frac{5}{3}u}(z^2 \mu^2/4)^u}{(1-2u)\Gamma(1+u)} - 1 \right) \bigg|_{\rm PV}$$

- Not including all leading renormalon effects
- Introducing higher renormalons (higher power corrections)

Beyond β_0 approximation

- Leading renormalon series follow certain properties:
 - The divergent rate is determined by the pole in Borel plane $r_n \sim \left(\frac{\beta_0}{2\pi}\right)^n n!$
 - The IR renormalon series is independent of UV renormalization
- We can infer the asymptotic form:
 - When $n \to \infty$, invariant under the change of renormalization scheme/scale $\alpha_s \to \alpha'_s, \beta \to \beta'$ Beneke, PLB (1995)

$$r_{n} = N_{m} \mu \left(\frac{\beta_{0}}{2\pi}\right)^{n} \frac{\Gamma[n+1+b]}{\Gamma[1+b]} \left(1 + \frac{b}{n+b}c_{1} + \frac{b(b-1)}{(n+b)(n+b-1)}c_{2} + \cdots\right)$$

b = $\frac{\beta_{1}}{2\beta_{0}^{2}}$, $c_{1} = \frac{1}{4 b \beta_{0}^{3}} \left(\frac{\beta_{1}^{2}}{\beta_{0}} - \beta_{2}\right)$ all from β functions

Determined from known series with the same Pineda, JHEP (2001) renormalon at high orders^{Bali, et.al., PRD} (2013)

LRR Beyond β_0 approximation

• Resumming the asymptotic series:

$$C_k(\alpha_s(1/z),1)_{\rm PV} = N_m \frac{4\pi}{\beta_0} \int_{0,{\rm PV}}^{\infty} du e^{-\frac{4\pi u}{\alpha_s(1/z)\beta_0}} \frac{1}{(1-2u)^{1+b_0}} (1+c_1(1-2u)+\ldots),$$

• Correcting the perturbative results:

$$C^{\text{LRR}}(\alpha_s(z^{-1}), 1) = C_k(\alpha_s(z^{-1}), 1) + \left[C_k(\alpha_s(z^{-1}), 1)_{\text{PV}} - \sum_i \alpha_s^{i+1}(z^{-1})r_i\right].$$

• Correcting the matching kernel:

$$\Delta \mathcal{C}^{\mathrm{LRR}}(x,y,\mu,P_z) = \int \frac{p_z dz}{2\pi} e^{i(x-y)zP_z} \left[\mu z C_k(\alpha_s(\mu), z^2 \mu^2)_{\mathrm{PV}} - \sum_i \mu z \alpha_s^{i+1} r_i(\mu) \right].$$

LRR improved perturbation theory

 $C_0(z, \mu^2 z^2)$:

Reduce the uncertainty 3~5 times from scale variation

Improve the convergence when going to higher order

LRR improved perturbation theory

 $C_0(z, \mu^2 z^2)$:

 $\ln\left(\frac{h^{R}(z,P_{Z}=0,z^{-1})}{C_{0}(z,1)}\right):$

Reduce the uncertainty 3~5 times from scale variation

Improve the convergence when going to higher order

Summary

- Parton physics can be calculated from lattice QCD through large momentum expansion precisely
- Power correction is an important source of systematic uncertainty
- We propose the first systematic approach to achieve $1/P_z$ accuracy
- The leading renormalon resummation reduces the scale variation and the convergence of perturbation theory.

Outlook

- More solid determination of the renormalon contribution
- Generalization to more complicated parton observables (polarized, GPD)
- Including more systematic uncertainties

Thank you!