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Introduction

» Collinear parton distribution functions (PDFs) probe the
longitudinal momentum distributions of quarks and gluons
inside a hadron.

» This is limited to only one-dimensional structure of the proton.

» For a three-dimensional understanding, we need to measure

generalized parton distributions and the transverse momentum
dependent PDFs (TMDPDFs).

» Also an important theoretical computation for future
electron-ion colliders.
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TMDPDFs from LaMET

» Advancements in LaMET have made it possible to calculate
TMDPDFs from first principles using lattice QCD.

> Two main ingredients for calculating TMDPDFs on the lattice
are the quasi-TMDPDF and the soft function.

» The quasi-TMDPDF contains an asymmetric staple-shaped
Wilson quark bilinear operator inserted between boosted
hadron interpolators.

» The infinitely long light-like gauge links in this staple-shaped
operator introduces a rapidity divergence, which is regulated
by the soft function.

4/36



Studies on lattice

Previous lattice calculations have been done for

> Soft function
[LPC PRL 125, 192001 (2020), Li et al. PRL 128, 062002 (2022), LPC
2306.06488]

» Collins-Soper kernel
[Ebert et al. PRD 99, 034505 (2019), Ebert et al. JHEP 03, 099 (2020),
Shanahan et al. PRD 104, 114502 (2021), LPC PRD 106, 034509 (2022)]

» Renormalization of quasi-TMDPDFs
[Shanahan et al. PRD 101, 074505 (2020), LPC PRL 129, 082002
(2022)]

> A first calculation of the full TMDPDF on the lattice
[LPC 2211.02340]
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Quasi-TMDPDF

Using LaMET, the rapidity scheme independent TMDPDF can be
written as

FTMD(x b1, C) = H (;) e " (E)KOOE b ) SE(bu) + ...

» f(x, b, u,(;) is the quasi-TMDPDF.
» S,(b, 1) is the reduced soft function.

» (, = (2xP#)? is the Collins-Soper scale of the
quasi- TMDPDF.

> H (%) is the perturbative matching kernel.

v

K (b, 1) is the Collins-Soper kernel.
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Quasi-beam function

The quasi-TMDPDF on the lattice is defined as

~ P*d - (pZ

F(x, b, 11,C) = lim /Ze—'X(Z” )B(z, b, L, P?, 1).
L—o0 21

Here B(z, b, L, P#, 11) is the so-called quasi-beam function that

contains the asymmetric staple-shaped Wilson quark bilinear

operator.

Bor(z,b, L, P?) =(N(P?)|O"(z, b, L)|N(P?))

=(N(P*)[g(b + 2)IW(b + z; L)q(0)|N(P?)).

I" can be either g or 3.
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Staple-shaped operator

O (z,b,L) = G(b+ z)IW(b + z; L)q(0)

Here g(x) is the standard light quark doublet and W(b + z; L)
defines the asymmetric staple-shaped Wilson link.

W(b+ z; L) = Wy (% —L)W, (% — L2; b)W,(% — L2 + by; L+ 2)

L
W,(X; L) = Pexp [—ig/ dXz - A(X+2N)| .
0

X— L2+ by

X+ by + z2

x|
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Reduced Soft function

The reduced soft function can be computed on the lattice through
the ratio of a meson form factor and the quasi - TMD wave
function (TMDWEF).

_ F(b, P?, 1)
[ dxdx H(x, X')iT(x', b)d(x, b)’

Sr(b, )

» F(b, P?, 1) is the meson form factor.
> 4)(x, b) is the quasi- TMDWF.
>

H(x, x") is a perturbative matching kernel.
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Quasi- TMDWF

The quasi-TMDWEF in the momentum space is defined as

B(x, b, i, () = lim /‘te_ix(zpz)@b(z,b,L,PZ,p).

- L—o0 2w

The bare quasi-TMDWF again contains the asymmetric
staple-shaped operator, but now inserted between the vacuum and
an external pion state.

%,F(Z, b7 L? Pz) :<O|Or(z7 b7 L)‘W(PZ»
=(01g(b + z)PW(b + z; L)q(0)|m(P*)).

Here ' can be either 579 or v573.
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Form factor

The pseudo-scalar light meson form factor is obtained through the
product of two local currents with a transverse separation.

Fr(b, P?) = <7r(—PZ)|L7Fu(b)c7rd(0)|7r(PZ)>.
[ can be 1,7s5,7v1 or v57..

To reduce higher twist contamination and extract only leading twist
contribution it has been found useful to consider the combination

F’M(bv 'Dz) + F’YS'YL(b7 PZ)'
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Lattice setup

We use an Nf =2+ 1+ 1 clover improved twisted mass ensemble
generated by the Extended Twisted Mass Collaboration (ETMC).

’ Lattice size ‘ a [fm] ‘ ajy ‘ my; [MeV] ‘ Neonf ‘
| 24 x48 [0.093 | 0.00530 | 350 | 100 |

» Momentum smearing has been used to reduce errors at large
momenta.

» The gauge links entering the staple-shaped Wilson line have
been smeared with 5 steps of stout smearing.

» The staple is calculated for 6 different directions of
momentum boost and for each, it is built for both of the
remaining transverse directions.
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Lattice setup

The quasi-beam function is obtained on the lattice through a ratio,

(CPH(z, b, L, P%; ts, 7))
(C2rt(P2; t5))

Py e PXOIN(x, )0 (2, b,

B Py e~ Px(0|N(x, ts)N

Bor(z,b, L, P*; 7, t5) =

7)N(0,0)[0)
,0)[0) '

L,
(0
N(x) is the proton interpolating field

Na(x) = €2€u2 () (de(x)C%uC(X)) .
Sequential sources built from point source propagators (8 for each

configuration) are used for sequential inversion to build the 3-point
function.
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Lattice setup
Similarly, the quasi-TMDWF comes from the 2-point function

1 .
CoPi(z,b, L, P* t) = e > e PO (2, b, L; 1) OL(0, P7)).
S %

And the pion form factor from the 3pt function

1 P _
= e > e PP (O, (t, —P?)al u(t, £ + b)dT d(t, X)OL(0, P?)).
S %

Here O, is a coulomb-gauge-wall-source operator,

Or =3 d(t,X)sd(t, 7)e PY

I
X?y

Averaged over 12 timeslice sources for each configuration.
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Renormalization

The staple-shaped gauge link, that we encounter in the evaluation
of both the quasi-TMDPDF and the quasi-TMDWF, has three
types of divergences.

| Linear divergence coming from the Wilson line, which
connects the quark fields and which depends on the length of
the staple-shaped link.

Il Logarithmic divergences coming from the endpoints of the
staple link.

Il Logarithmic divergences coming from the presence of cusps in
the staple.

The form factor contains local current operators and hence can be
renormalized using the vector and axial current renormalization
constants Zy and Zj.
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Operator mixing

(0.L+2) (bL+2)  g0.0)

O-H—(r)
O *(I)

16/36



Operator mixing
We consider a combination of the 8 operators
1
{ijkl}c :§[{i OtT +;0 " +kO" +10 1}
+c{iOFT+jO0;" +kOI~ +10-7}].

The relevant combinations that have definite symmetry properties

(++++)c=(———)e
(+=+=)c=(—+—-1)c
(++—)c=(——++)c
(+——F)e=(—++-)c

We observe the change of sign of these 4 operators for different
Dirac structures.
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Operator mixing example

r +++H)c  +F—+-) H+-—) (+——)
(===") (=+—=4+c (==++)c (=++-)
.2
P"f02 Y0 - + - +
P —Y0 + - + -
ih
Pé ) + + - -
Pes —70 + - - +
Teo 0 + + + +
712 B B B R
i, 0
T,_iz’z Y0 - + + -
= Yo - - + +
C Yo c c c c
r +++H)c  (+—+") H+-—) (H——+)
(===) (—+-+)c (=—++)c (—++-)
Py~ + - + -
7:',1:’]2 7073 - + - +
7’5’22 7073 - - + +
Pes  —7073 + - - +
T%dz —Y073 + + + +
7}1{2 Y073 - - -
Tes Y03 - + + -
Tet =0 + + - -
C —Y073 c c c c
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Operator mixing results
Between g and 7p7y3 we observe the following mixing:

(++ ++)c with (+——+),
(+—+-)c with (++—-),
(++ —=)c with (+—+-)c,
(+— —+)c with (++++)c.

In general, we find that any operator ' can possibly mix with

| 2 r"}/z

| 2 ny3

> 273
Since we are interested in 7p, we need to consider the mixing of
the operators {70,702, 7073, 7571 }-

Higher dimensional operators have not been considered, since they

are expected to be power suppressed.
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RI/MOM

In the RI/MOM scheme, the renormalization constants are defined
by the condition

=1.

2,2

Z8\(z,b,L,poi 1/a) 1 [/\g(z, b, L, p; 1/a)r’]
Ho

Z,?I(MO? 1/a) 12 elp*z+ip b

p

The vertex function Af) is defined in terms of the amputated
Green's function

/\g(z, b,L,p;1/a) = 5glGr(z, b, L, p; 1/3)5;1.

Sq is the off-shell quark propagator. The Green's function is
calculated as

G'(z,b,p, L;1/a) = (a(p)|O" (2, b, p, L; 1/a)[a(p)).
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Diagonal factor

The diagonal RI/MOM factor Zﬂlfo'% for fixed L/a = 10 (and fixed
z/a = 2 for the right plot).

8 s &
_| | = Re(2) + bla=1
g -
= Im(2) X bla=2 ol |+ Re(z) :
8 « x Im(2)
= Eg + ) *
22 228
N . N =
] . + R
o por +
% FUF LR *
E : ¥
= i 8
0 2 4 z?a 8 10 12 1 2 3 b/aA 5 6

It seems there are remaining divergences related to large values of
b and z.
This results in noise in the large b and z regions.
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Effects of mixing

The contribution of the off-diagonal RI/MOM factors compared to
the diagonal element for fixed L/a = 10 (and fixed z/a = 2 for the

right plot).
: :
& |+ I =Yoy2 ® b/a=1 gl |+ I =Yoy2
x T =YoYs ® b/a=2 x T =YoYs
o =Vsy1 —sg] I=ysv1
zfs
T3
e
P °
sli ® o+ & & 3 3 1 i i % % 8] * ¥ ¥ {%
° ; ! T 3 3 7 3

0 2 4 é 8 1 )
z/a

The off-diagonal contribution is less than 6% at least up to

b/a = 6 for all values of z.
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Effects of mixing

We compare the RI/MOM renormalized quasi-beam function
considering all the 4 operators that are allowed to mix and only
considering the diagonal factor (assuming no mixing).

Re(BY' )
0‘5

0.0

0, Yo

15
i

-05
!

-10
i

1.0
i

= L/a=6 + RI + RI
o m L/a=10 Lare xRl no-mix . ]}{:ﬂﬂ{ xRl no-mix
= % ¥
¥ i e ﬂH ' +]
W i, i tl
i '} v il
24 = Lia= ¥
JW ”m ‘ L

zla

zla

The mixing has no discernible effect and hence can be neglected
and a multiplicative renormalization can be assumed.




Short Distance Ratio (SDR)

A rectangular Wilson loop with length 2L + z along the
longitudinal and b along the transverse direction has the same
divergences as that of the staple-shaped gauge link.

1
Ze(b,2L+ z;1/a) = 3 Tr(0)W(b; 2L + z) W, (X + b; —b)|0)

This should cancel the linear divergence, pinch-pole singularity and
the cusp divergences.

We define a ratio

Br(z, b, P*1/a) = lim Dor(z:b L PFil/a)
L=voo \/Zg(b,2L + z;1/3)
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Effect of Wilson loop subtraction

; i i i i t ;, p ot bt
® Bo,y(b/a=1) . ® By y(b/a=1)
3 + By(b/a=1) A P b+ Bylb/a=1)
s @ Boyblaz2) | o, | & Byy(b/a=2)
T3 ® s, |xBy(b/a=2) ] l l l . x By(b/a=2)
<! 3 g La o 12 - 3 8 a o 2

This ratio takes care of the divergences associated with the length
L and width b of the staple-shaped operator.
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SDR renormalization factor

After the Zg subtraction, the only remaining divergences are the
UV divergences.

This can be cancelled by taking a ratio with an appropriate matrix
element.

1
Br(Z = Zg,b = bo,Pz =0; 1/8)

Z°PR(z,bp;1/a) =

Since the remaining divergences are not related to the shape of the
staple, we are free to choose any by and z.

However, for a better perturbative matching to MS, it is better to

fix bg and zy at a small perturbative region. We choose
by = zp = 1la.
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Short distance RI/MOM (RI-short)

In a similar fashion to SDR, we can define a vertex function that is
free of divergences associated to the staple-shaped gauge link.

. ' ~ N(z,b,p;1/a)
N(zb.pil/a) = VZe(b,2L + z; 1/a)

The renormalization factor can be obtained at a fixed by and zg.

2§\~ (20, bo, pioi1/a) 1 1. [/\r(z, b,p; 1/a)r’] .

pP=p},z=20,b=hy

Zc'f'(,uo; 1/a) 12 elp*z+ibpy

We again choose by = zg = 1a.

27/36



SDR and RI-short factors (MS)

+ bp/a=1
2 X bg/la=2
By
=L i : _
z"‘ . + + £ J
4.8 2 S
T + bp/a=1 = X = RI-short 7 1 ‘
3 x bpla=2 = X =SDR T
=i
;
S = X =RI-short
= X =SDR
= o
o 1
0.0 0‘5 1.‘5 2‘,0 U.‘U 0‘5 1"010/21 15 20

T
10
2o/a

The MS converted renormalization factors for the 2 different
approach are comparable.
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Quasi-beam function
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. AR % J[Jf ol
s E H i i
g5 ,f{’i Je{'f, Be JFJEJ&” % H‘
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Quasi-beam function (MS)

2 et
H % ]
N
2 i" J‘i i«;{%#qf
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Quasi-TMDPDF

).

iX(ZPZ)B(Z, b, PZ,,LL

o

P?dz
2

)

¢

f(Xa baua

e RI-short,

ST 0

0 0o

e RI-short
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Renormalized quasi-TMDWEF (preliminary)

Ur(z, b, P?, 1) = ZM3.(z0 = 1,bp = 1, ) lim

Yor(z, b, L, P*;1/a)

L=oo /Zg(b,2L + z;1/a)

+ P?=1.7 GeV 53 + P?=17 GeV
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o % % N by T
g 5 o
Fe : & Lt
2 4 .
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=2 * = i
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Quasi-TMDWEF in momentum space (preliminary)

dz —ix(zP? z
BocsbunGe) = [ 5e oz, b, P ),

® P?=17 GeV ® P’=17 GeV
® P?=22GeV ® P?=22GeV |/
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Meson form factor (preliminary)

Fr(b, P?) = (x(—P?)|al u(b)dr d(0)|x(P?)).

o] &
- =]
+ I=ysyo + P?=1.7 GeV
. i x T=yg . x P?=22 GeV
31t N =y
: t
S 23]
& ]
2 b % i
. s
N m p2=17GeV N H
Ay = P?=22GeV 3
o] g
7 g
0 1 2 3 4 0 1 2 3 4
bla bl
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Conclusion and Outlook

> We studied the operator mixing of the asymmetric
staple-shaped operator and showed negligible effects of mixing.

» We presented results for the quasi-TMDPDF for 2 different
approaches of renormalization procedure.

> We presented preliminary results for the quasi-TMDWF and
the meson form factor.

» Next step is to extract the Collins-Soper kernel and the soft
function.

» And finally compute the TMDPDF.

» Further work is ongoing on different lattice ensembles in order
to study finite volume effects and O(a) effects.

» Also further computations at larger momenta is also underway.
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