

Top quark mass, strong coupling and other problems (LHC experimentalist's view)

Katerina Lipka

Standard Model @ Ultimate Precision

Pillars of SM vacuum stability

Value and precision of m_t and $\alpha_S(m_Z)$ drive the vacuum stability rather than m_H

e.g. G.Degrassi et al, JHEP 1208 (2012) 098

new physics

Pillars of SM vacuum stability

0.10 = 173.1 ± 0.6 GeV mt Prediction for Higgs self-coupling 0.08 $\alpha_{\rm S}$ (m_z) = 0.1184 ± 0.0007 0.06 = 125 ± 0.3 GeV mн 0.04 0.02 $M_t = 171.3 \, {\rm GeV}$ stable 0.00 $\alpha_s(M_{\tilde{Z}}) = 0.120$ unstable $\alpha_{s}(M_{Z}) = 0.116$ -0.02 $M_t = 174.9 \, \text{GeV}$ -0.04 $10^6 \ 10^8 \ 10^{10}$ 10^{12} 10^{14} 10^{16} 10^{18} 10^{20} 10^{4} 10^{2} energy scale (GeV)

e.g. G.Degrassi et al, JHEP 1208 (2012) 098

Value and precision of m_t and $\alpha_S(m_Z)$ drive the vacuum stability rather than m_H

new physics

problem 1: m_t and $\alpha_S(m_Z)$ values need to be extracted experimentally problem 2: m_t and $\alpha_S(m_Z)$ are not "observables", can not be 'measured' directly problem 3: both m_t and $\alpha_S(m_Z)$ enter predictions for e.g. $t\bar{t}$ production in ppproblem 4: @ LHC, both m_t and $\alpha_S(m_Z)$ correlated with proton parton distributions

Proton-proton collisions at the LHC

Parton Distribution Functions $f_{i,i}(Q^2, x)$ of both protons enter factorisation

Top quark production at the LHC

Top quark production at the LHC

Single Top Quark Production sensitive to CC interaction sensitive to proton structure (light quarks)

fi

P₁

μF

x P₁∎

Top Quark-Antiquark Pair Production > 85% gluon-gluon fusion predictions available to NNLO precision predicted $\sigma_{t\bar{t}}$ depends on:

• gluon distribution g(x)

хP

- $\alpha_S(m_Z)$
- top quark mass m_t

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

@ scale μ

not a unique physical parameter, needs to be defined through renormalisation schemes

plays a role similar to the couplings of the SM Lagrangian

[for more details see e.g. Hoang, <u>arXiv:2004.12915</u>, CMS Collaboration, <u>arXiv:2403.01313</u>]

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

@ scale μ

- not a unique physical parameter, needs to be defined through renormalisation schemes
- plays a role similar to the couplings of the SM Lagrangian

[for more details see e.g. Hoang, <u>arXiv:2004.12915</u>, CMS Collaboration, <u>arXiv:2403.01313</u>]

NB: Formally, cross section predictions are independent of a choice of renormalisation scheme

in practice, can be made only at some finite truncation order in perturbation theory: \rightarrow for a particular observable, only certain scheme choices are adequate (so that the scheme assures absorption of quantum corrections in m_t - dependence)

Example: choice of renormalisation scheme for m_t — dominant uncertainty in the predictions for Higgs-boson or 2-Higgs production [J. Mazzitelli, arXiv:2206.14667]

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

@ scale μ

 m_t renormalisation schemes:

- pole mass scheme
- **modified minimal-subtraction (MS) scheme** (renormalisation scale μ_m)
- low-scale short-distance mass (MSR) scheme (renormalisation scale R) [A. Hoang et al 1704.01580]

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

@ scale μ

 m_t renormalisation schemes:

_ pole mass scheme $m_t = m_t^{pole}$

Defined as the **pole of the top-quark propagator** (in the approximation of a free particle) can be formally defined **at any order** (its colour does not prohibit the definition of the top quark as an "asymptotic state" in pQCD) [Tarrach, Nucl. Phys. B 183 (1981) 384; Kronfeld, hep-ph/9805215]

Concept of an asymptotic "top particle" unphysical (assumes δm can be distinguished from the real radiation at arbitrarily small scales)

→ Intrinsic ambiguity of 110–250 MeV (*renormalon problem*)

[Beneke, Marquard, Nason, Steinhauser, arXiv:1605.03609; Hoang, Lepenik, Preisser, arXiv:1706.08526.]

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

@ scale μ

 m_t renormalisation schemes:

- pole mass scheme
- . modified minimal-subtraction (\overline{MS}) scheme (renormalisation scale μ_m)

implies dependence on mass-renormalisation scale: $m_t(\mu_m)$, at the scale of the mass itself, denoted as $m_t(m_t)$

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

(a) scale μ

m_t renormalisation schemes:

- pole mass scheme
- **modified minimal-subtraction (MS) scheme** (renormalisation scale μ_m)

implies dependence on mass-renormalisation scale: $m_t(\mu_m)$, at the scale of the mass itself, denoted as $m_t(m_t)$

low-scale short-distance mass (MSR) scheme (renormalisation scale R) -

interpolates between the m_t^{pole} and the MS schemes:

- $m_t^{MSR}(R)_{R \sim m_t(m_t)} \longrightarrow m_t(m_t)$ $m_t^{MSR}(R)_{R \to 0} \longrightarrow m_t^{pole}$

Beyond LO: bare-mass term in Lagrangian receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$

@ scale µ

 m_t renormalisation schemes:

- pole mass scheme
- **modified minimal-subtraction (MS) scheme** (renormalisation scale μ_m)
- Iow-scale short-distance mass (MSR) scheme (renormalisation scale R)

both schemes do not have the renormalon ambiguity (more physical treatment of δm)

 μ_m and R: energy scales, above which the self-energy corrections are absorbed into the mass, below these scales, the real and virtual corrections are treated unresolved

A proper choice of the scheme or of the renormalisation scales is not straightforward in context of numerical predictions [e.g. calculations for top quark production @ LHC] \rightarrow need to account for correlations with renormalisation scales related e.g. to α_S and PDFs

How does an experiment see top quarks ?

W boson:

- high- p_T leptons, isolation in tracker + calorimeters
- negative vectorial sum p_T of reconstructed particles (missing p_T)

b-tagged jets:

based on large mass and long lifetime of B-hadrons

Results on the top quark mass

[PLB 728 (2014) 496]

[JHEP 08 (2016) 029]

[JHEP 09 (2017) 051]

[EPJC 79 (2019) 368]

[EPJC 80 (2020) 658]

[JHEP 07 (2023) 213]

[JHEP 07 (2023) 077]

[EPJC 79 (2019) 368]

stat.

Direct measurements

two classes:

"indirect"

"direct"

CMS Collaboration, arXiv:2403.01313

Results on the top quark mass

two classes:

"indirect"

best precision 800 MeV

"direct"

seems doing best ? claims precision ~ 400 MeV

Results on the top quark mass

Direct measurements

CMS Collaboration, arXiv:2403.01313

Is the measured quantity well defined?

Is its uncertainty fully understood?

Direct measurement

based on the picture of the top quark as a free particle

(invariant mass of the decay products directly related to the mass of "top quark particle")

kinematic fit using 3-momenta of the decay products

peak position is used as an estimator of m_t

Direct measurement

based on the picture of the top quark as a free particle

(invariant mass of the decay products directly related to the mass of "top quark particle")

Relies on MC simulations for the modelling of the decay topologies + experimental effects Result : m_t^{MC} , top-quark mass parameter used in the particular MC simulation Based on the most m_t^{MC} - sensitive observables \rightarrow highest experimental precision Limitation of the MC simulations \rightarrow conceptual uncertainty in relation $m_t \propto m_t^{MC}$ NB: a theoretical problem!

Meaning of m_t^{MC}

Related to accuracy and implementation of PS and the top quark decay ME Control m_t^{MC} at NLO needs at least NLL for the PS evolution + NLO for decay

Conceptually : $m_t^{MC} - m_t^{pole} = -2/3 Q_0^2 \alpha_s(Q_0^2)$ [Hoang, Plartzer, Samitz, arXiv:1807.06617]

transverse momentum shower cutoff of the coherent branching algorithm State-of-the-art MC: $Q_0^2 \sim 1$ GeV, $m_t^{MC} - m_t^{pole} \approx 0.5$ GeV

arXiv:2403.01313

Collaboration,

CMS

180

m, [GeV]

Meaning of m_t^{MC}

Related to accuracy and implementation of PS and the top quark decay ME Control m_t^{MC} at NLO needs at least NLL for the PS evolution + NLO for decay

Conceptually: $m_t^{MC} - m_t^{pole} = -2/3 Q_0^2 \alpha_s(Q_0^2)$ [Hoang, Plartzer, Samitz, arXiv:1807.06617]

transverse momentum shower cutoff of the coherent branching algorithm State-of-the-art MC: $Q_0^2 \sim 1$ GeV, $m_t^{MC} - m_t^{pole} \approx 0.5$ GeV

Calibration studies:

 m_t^{MC} corresponds to m_t^{pole} or m_t^{MSR} within 0.5–1.0 GeV

[*Kieseler, Lipka, Moch arXiv:1511.00841, M. Butenschoen et al. arXiv:1608.01318 B. Dehnadi, et al arXiv:2309.00547 P. Azzi et al. arXiv:1902.04070*]

Which mass to use for stability plot?

<section-header><section-header>

Direct measurements

Ш

Full reconstructi Dilepton 7 TeV, K Lepton+jets 7 TeV Dilepton 7 TeV, Al All-jets 7 TeV, 2D Lepton+iets 8 TeV All-jets 8 TeV, Hyt Dilepton 8 TeV, Al Single top quark 8 Dilepton 8 TeV, M Lepton+jets 13 Te All-jets 13 TeV, H Dilepton 13 TeV, / Single top quark 1 Lepton+jets 13 Te Combination 7+8

Boosted measu Boosted 8 TeV, C Boosted 13 TeV, X Boosted 13 TeV, X

Alternative mea Dilepton 7 TeV, Ki 1+2 leptons 8 TeV 1+2 leptons 8 TeV

2	Μ	S	

ndirect	mass	extractions

Pole mass from cross section Inclusive tt 7 TeV, NNLO \otimes CT10 Inclusive tt 7+8 TeV, NNLO \otimes CT14 Inclusive tt 13 TeV, NNLO \otimes CT14 Inclusive tt 13 TeV, NNLO \otimes CT14 Differential tt 13 TeV, NLO + 3D fit (m_t^{pole} , α_s , PDF) Dilepton 7+8 TeV, ATLAS+CMS cross section Differential tt+jet 13 TeV, NLO \otimes CT18

		—	•
	-	•	
-			
•			
			1
FUR			
H	•	1	

				-
	1		stat.	total
	ATLAS+C	MS combi 3) 213]	nation	$m_{\rm t}^{\rm pole} = 173.4^{+1.8}_{-2.0} {\rm GeV}$
	CMS 7+8	TeV comb	. <i>m</i> ^{MC} :	= 172.52 ± 0.42 GeV
	CMS 7+8	TeV comb 4) 261902]	. stat. I	uncertainty
pole	177.0 +3.6	(tot) CoV		IDI D 700 (2014) 4001

$m_{\rm t}^{\rm pose} = 177.0$	-3.3	(tot) G	BeV	[PLB 728 (2014)	496]
$m_{\rm t}^{\rm pole} = 174.3$	+2.1 -2.2	(tot) G	BeV	[JHEP 08 (2016)	029]
$m_{\rm t}^{\rm pole}=170.6$	± 2.7	(tot) G	GeV	[JHEP 09 (2017)	051]
$m_{\rm t}^{\rm pole} = 173.7$	+2.1 -2.3	(tot) G	BeV	[EPJC 79 (2019)	368]
$m_{\rm t}^{\rm pole} = 170.5$	±0.8	(tot) G	GeV	[EPJC 80 (2020)	658]
$m_{\rm t}^{\rm pole} = 173.4$	+1.8 -2.0	(tot) G	BeV	[JHEP 07 (2023)	213]
$m_{t}^{\text{pole}} = 172.13$	3 ± 1.43	(tot) G	ЗеV	[JHEP 07 (2023)	077]

 $m_{\rm t}(m_{\rm t}) = 165.0$ $^{+1.8}_{-2.0}$ (tot) GeV

[EPJC 79 (2019) 368]

Which mass to use for stability plot?

[EPJC 79 (2019) 368]

stat.

total

[PLB 728 (2014) 496]

[JHEP 08 (2016) 029]

[JHEP 09 (2017) 051]

[EPJC 79 (2019) 368]

[EPJC 80 (2020) 658]

[JHEP 07 (2023) 213]

[JHEP 07 (2023) 077]

CMS Collaboration, arXiv:2403.01313

Top quark cross sections

single top

/ee/eµ/I+jets 13.6 TeV (L CMS I+jets 13 TeV (L = 137 fb⁻¹) eµ 13 TeV (L = 35.9 fb⁻¹) $\tau + e/\mu$ 13 TeV (L = 35.9 fb⁻¹) e_{μ} 8 TeV (L = 19.7 fb⁻¹) 10^{3} I+jets 8 TeV (L = 19.6 fb⁻¹) all-jets 8 TeV (L = 18.4 fb⁻¹) e_{μ} 7 TeV (L = 5 fb⁻¹) I+jets 7 TeV (L = 2.3 fb^{-1}) all-jets 7 TeV (L = 3.54 fb^{-1}) $e_{\mu}/l+jets 5.02 \text{ TeV} (L = 27.4-302 \text{ pb}^{-1})$ 900 10² 800 700 NNLO+NNLL 13.6 Vs (TeV) PRL 110 (2013) 252004 10 PDF4LHC21, m = 172.5 GeV, α (m) = 0.118 10 12 2 4 6 8 √s (TeV)

CMS Collaboration, arXiv:2403.01313

single top used for m_t^{MC} measurement, is important for future m_t extractions

mostly used for m_t extractions

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

✓ normalisation is driven by the value of m_t , $\alpha_S(m_Z)$, g(x)✓ compare measurement to prediction: extract m_t

analysis strategy:

 m_t

99

000000

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

✓ normalisation is driven by the value of m_t , $\alpha_S(m_Z)$, g(x)✓ compare measurement to prediction: extract m_t

analysis strategy:

 m_t

consider experimental and theory uncertainties

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

In a real measurement

limited detector acceptance: extrapolation to full phase space relies on MC (rest dependence on m_t^{MC})

✓ normalisation is driven by the value of m_t , $\alpha_S(m_Z)$, g(x)✓ compare measurement to prediction: extract m_t

choice of different PDFs + $\alpha_S(m_Z)$ \rightarrow different values of predicted $\sigma_{t\bar{t}}$ [m_t correlated with $\alpha_S(m_Z)$ and g(x)]

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

In a real measurement

limited detector acceptance: extrapolation to full phase space relies on MC (rest dependence on m_t^{MC})

✓ normalisation is driven by the value of m_t , $\alpha_S(m_Z)$, g(x)✓ compare measurement to prediction: extract m_t

choice of different PDFs + $\alpha_S(m_Z)$ \rightarrow different values of predicted $\sigma_{t\bar{t}}$ [m_t correlated with $\alpha_S(m_Z)$ and g(x)]

✓ additional uncertainty from rest-dependence of $\sigma_{t\bar{t}}$ on m_t^{MC}

✓ only one parameter, g(x), OR α_S , OR m_t can be extracted from inclusive cross section

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

✓ normalisation is driven by the value of m_t , $\alpha_S(m_Z)$, g(x)✓ compare measurement to prediction: extract m_t or $\alpha_S(m_Z)$, or g(x)

1) fix g(x) AND $\alpha_S(m_Z)$

 $\checkmark m_t$ can be extracted

 m_t^{pole} , $m_t(m_t)$ or m_t^{MSR} can be extracted from inclusive $t\bar{t}$ production cross section

✓ normalisation is driven by the value of m_t , $\alpha_s(m_z)$, g(x) \checkmark compare measurement to prediction: extract m_t or $\alpha_{\rm S}(m_{\rm Z})$, or g(x)

1) fix g(x) AND $\alpha_s(m_z)$

 $\checkmark m_t$ can be extracted

1) fix g(x) AND m_t

 $\checkmark \alpha_{\rm S}(m_{\rm Z})$ can be extracted

Indirect extractions of m_t or $\alpha_s(m_Z)$

Extraction of m_t or $\alpha_s(m_Z)$ using $t\bar{t}$ production at the LHC at \sqrt{s} = 13 TeV

this time, $\sigma_{t\bar{t}}$ measured independent of m_t^{MC} (both extracted simultaneously in a multi-dimensional fit to the final state distributions)

Compare measurement to theory: NNLO pQCD in \overline{MS} renormalisation scheme using different PDFs

3-fold correlation in $\sigma_{t\bar{t}}$

Extraction of m_t or $\alpha_s(m_Z)$ using $t\bar{t}$ production at the LHC at \sqrt{s} = 13 TeV

[[]CMS EPJC 79 (2019) 368]

Solution: explore differential cross sections,

- use observables less correlated to $\alpha_{\rm S}(m_{
 m Z})$ and PDFs
- mitigate the correlation by simultaneous extraction of $\alpha_S(m_Z)$, m_t and g(x)

Less PDF/ α_S biased observables in $t\bar{t}$ +jet

tt+1-jet event topologies, jet with $p_T > 30$ GeV Observable: inverse of the system invariant mass (IR-safe) [Alioli et al 1303.6415, arXiv:2202.07975]

 $\mathcal{R}(m_t,\rho) = \frac{1}{\sigma_{t\bar{t}+jet}} \frac{d\sigma_{t\bar{t}+jet}}{d\rho}(m_t,\rho)$

$$\rho = \frac{2m_0}{\sqrt{s_{t\bar{t}+jet}}}, m_0 = 170 \text{ GeV}$$

sensitivity also close to threshold, increased wrt $t\bar{t}$ (due to additional gluon radiation) shape-observable: mitigate PDF + α_S dependence

Less PDF/ α_S biased observables in $t\bar{t}$ +jet

tt+1-jet event topologies, jet with $p_T > 30$ GeV Observable: inverse of the system invariant mass (IR-safe) [Alioli et al 1303.6415, arXiv:2202.07975]

 $\mathscr{R}(m_t,\rho) = \frac{1}{\sigma_{t\bar{t}+jet}} \frac{d\sigma_{t\bar{t}+jet}}{d\rho}(m_t,\rho)$

 $\rho = \frac{2m_0}{\sqrt{s_{t\bar{t}+jet}}}, m_0 = 170 \text{ GeV}$

[CMS 2207.02270]

 $m_t^{pole} = 171.1 + 1.2 \text{ GeV}$

 $m_t^{pole} = 172.93 \pm 1.36 \,\mathrm{GeV}$

theory NLO, NNLO in work

The top quark and the gluon

In *pp* collisions top-quark pair production probes g(x) at high *x* due to large m_t ATLAS and CMS measurements of inclusive $\sigma_{t\bar{t}}$ incorporated in modern PDF sets

Illustration of the impact of a single measurement

1 data point added in the PDF fit to DIS data: reduction of the uncertainty in g(x)

Even single (imprecise) measurement has a visible effect on g(x) at high xDifferential cross section measurements have significantly higher impact

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$]
- rapidity of $t\bar{t}$ pair, $y_{t\bar{t}}$
- number of additional jets: adds sensitivity to $\alpha_{S}(m_{Z})$

- data vs theory* using different PDFs

[CMS arXiv:1904.05237]

sensitivity to PDFs: $x_{1,2} = \frac{M_{t\bar{t}}}{\sqrt{s}} e^{\pm y_{t\bar{t}}}$

* NLO: MadGraph5_aMC@NLO: $\sigma_{t\bar{t}}$ Mangano, Nason, Ridolfi, NPB 373 (1992) 295

 $\sigma_{t\bar{t}+jet}$: Dittmaier, Uwer, Weinzierl, PRL 98 (2007) 262002

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\overline{t}$ pair, $y_{t\overline{t}}$
- number of additional jets: adds sensitivity to $\alpha_S(m_Z)$

[CMS arXiv:1904.05237]

- data vs theory* using different m_t^{pole}

* NLO: MadGraph5_aMC@NLO: $\sigma_{t\bar{t}}$ Mangano, Nason, Ridolfi, NPB 373 (1992) 295 $\sigma_{t\bar{t}+iet}$: Dittmaier, Uwer, Weinzierl, PRL 98 (2007) 262002

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\bar{t}$ pair, $y_{t\bar{t}}$
- number of additional jets: adds sensitivity to $\alpha_S(m_Z)$

[CMS arXiv:1904.05237]

- data vs theory* using different $\alpha_{S}(m_{Z})$

sensitivity to $\alpha_S(m_Z)$

* NLO: MadGraph5_aMC@NLO: $\sigma_{t\bar{t}}$ Mangano, Nason, Ridolfi, NPB 373 (1992) 295 $\sigma_{t\bar{t}+iet}$: Dittmaier, Uwer, Weinzierl, PRL 98 (2007) 262002

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\bar{t}$ pair, $y_{t\bar{t}}$
- number of additional jets: adds sensitivity to $lpha_S(m_Z)$

$N_{jet} \propto \alpha_{s}(m_{z})$ $g \rightarrow f \rightarrow f \rightarrow f$ m_{t}

Best results, so far ?

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $t ar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\overline{t}$ pair, $y_{t\overline{t}}$
- number of additional jets: adds sensitivity to $lpha_S(m_Z)$

Idea: extract simultaneously PDF, $\alpha_{S}(m_{Z})$ and m_{t}^{pole}

Precise results on m_t^{pole} and $\alpha_s(m_Z)$ unbiased among each other and from PDFs

$N_{jet} \propto \alpha_{S}(m_{Z})$ $g \rightarrow 0$

Other problems ...

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\bar{t}$ pair, $y_{t\bar{t}}$
- number of additional jets: adds sensitivity to $lpha_S(m_Z)$

Idea: extract simultaneously PDF, $\alpha_{S}(m_{Z})$ and m_{t}^{pole}

g(x) gets improved uncertainty

 $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$

 $\alpha_S(m_Z) = 0.1135 \begin{array}{c} +0.0021 \\ -0.0017 \end{array}$

excellent precision, but sensitivity obtained @ $t\bar{t}$ threshold, QCD: bound state effects, arising from gluon exchanges in $t\bar{t}$ (toponium discussion, see e.g. special session @ TOPLHC WG Nov. 2024 <u>https://indico.cern.ch/event/1444046/</u>)

Other problems

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $t\bar{t}$ pair, $M_{t\bar{t}}$
- rapidity of $t\bar{t}$ pair, $y_{t\bar{t}}$
- number of additional jets: adds sensitivity to $\alpha_{\rm S}(m_{\rm Z})$

Idea: extract simultaneously PDF, $\alpha_{S}(m_{Z})$ and m_{t}^{pole}

g(x) gets improved uncertainty

 $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV} \pm ?_{toponium}$

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1135 \stackrel{+0.0021}{_{-0.0017}}$

how would 'toponium' modify $M_{t\bar{t}}$ @ threshold?

[Special session @ TOPLHC WG https://indico.cern.ch/event/1444046/

e.g. Maltoni et al 2404.08049]

$N_{jet} \propto \alpha_S(m_Z)$

Other problems

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\bar{t}$ pair, $y_{t\bar{t}}$
- number of additional jets: adds sensitivity to $\alpha_{\rm S}(m_{\rm Z})$

Idea: extract simultaneously PDF, $\alpha_{S}(m_{Z})$ and m_{t}^{pole}

g(x) gets improved uncertainty

 $\alpha_S(m_Z) = 0.1135 + 0.0021$

- $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$: good precision, sensitivity obtained @ $t\bar{t}$ threshold, what would be an effect from possible Non-Relativistic contributions?
 - : very precise (in spite of low sensitivity) and very low ! can be cross-checked with other (m_t - independent) processes?

Other problems ...

triple-differential $t\bar{t}$ cross sections as a function of

- invariant mass of $tar{t}$ pair, $M_{tar{t}}$
- rapidity of $t\overline{t}$ pair, y_{r}
- number of additior

Idea: extract simultaneously PDF, $\alpha_S(m_Z)$ and m_t^{pole}

g(x) gets improved uncertainty

 $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$

 $\alpha_S(m_Z) = 0.1135 \begin{array}{c} +0.0021 \\ -0.0017 \end{array}$

PDF-unbiased $\alpha_S(M_Z)$ from other processes

inclusive jet production $pp \rightarrow jet + X$

PDF in every line, α_S at every corner: ideal process to extract $\alpha_S(m_Z)$ and PDFs earlier results based on NLO QCD, limited by missing higher-order (MHO) corrections

PDF-unbiased $\alpha_S(M_Z)$ from other processes

inclusive jet production $pp \rightarrow jet + X$

Recent result vs NNLO:

MHO corrections not a limiting factor any more, PDF dominant uncertainty

PDF-unbiased $\alpha_S(M_Z)$ from incl. jets

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

SM NNLO Hessian uncertainties CMS **SM NNLO Hessian uncertainties** CMS arXiv:2111.10431 PDF fit together with $\alpha_{\rm S}(m_{\rm Z})$ δ³ 0.6 o 0.35 $\mu_{t}^{2} = m_{t}^{2}$ $\mu_{t}^{2} = m_{t}^{2}$, х) л>0.5 , с о with jets with jets 🛛 no jets no jets • 0.25 × 0.4 × 0.2 0.3 0.15 0.2 0.1 u valence d valence 0.1 0.05 Fract. uncert. 1 2.0 2.0 0 2.1 uncert. 8.0 8.0 (HERA+CMS) / HERA (HERA+CMS) / HERA 10⁻⁴ 10^{-3} 10⁻² 10⁻¹ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ Х Х CMS **SM NNLO Hessian uncertainties** CMS **SM NNLO Hessian uncertainties 0**100 ືອ ²⁰ $\mu_{t}^{2} = m_{t}^{2}$ $\mu_{f}^{2} = m_{t}^{2}$ Σ **(x**, 18 Ķ, with jets with jets **16** ත ₈₀ 🛛 no jets ● 14¹ no jets × × 12E 60 10 singlet gluon 40 20 0 1.1 1 9.0 9.0 9.0 Fract. uncert. no jets / with jets no jets / with jets 10^{-3} 10^{-2} 10⁻¹ 10^{-3} 10^{-2} **10**⁻¹ 10⁻⁴ 10^{-4} Х Х

PDF-unbiased $\alpha_S(M_Z)$ from incl. jets

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

PDF fit together with $\alpha_S(m_Z)$

addition of jet cross sections improves precision of the gluon at high x !

PDF-unbiased $\alpha_S(M_Z)$ from incl. jets

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

PDF fit together with $\alpha_{\rm S}(m_7)$ $\alpha_{\rm S}(m_{\rm Z}) = 0.1166 \pm 0.0017$ (NNLO)

Should we use better value for $\alpha_S(m_Z)$?

Thanks Tom !

 $\alpha_S(m_Z) = 0.1135 \substack{+0.0021 \\ -0.0017}$ (NLO) $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$ (NLO)

[from CMS arXiv:1904.05237]

 $\alpha_S(m_Z) = 0.1166 \pm 0.0017$ (NNLO) [CMS <u>arXiv:2111.10431</u>]

 $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$ (NLO) [from CMS arXiv:1904.05237]

Get more into stability region... ... but not very consistent (some correlations might be not considered)

Fit jets and $t\bar{t}$ 3-d cross sections together

Full QCD fit at NLO: basis data - ep inclusive DIS cross sections (HERA) [arXiv:1506.06042]

+ CMS inclusive jets at 13 TeV [arXiv:2111.10431]: sensitivity to PDF and α_S

+ CMS 3-D $t\bar{t}$ cross sections [arXiv:1904.05237]: m_t + additional sensitivity to α_s

Using consistent m_t^{pole} and $\alpha_s(m_z)$

 $\alpha_S(m_Z) = 0.1135 \substack{+0.0021 \\ -0.0017}$ (NLO) $m_t^{pole} = 170.5 \pm 0.8$ GeV (NLO)

[from CMS arXiv:1904.05237]

 $\alpha_S(m_Z) = 0.1188 \pm 0.0026$ (NLO) $m_t^{pole} = 170.4 \pm 0.7$ GeV (NLO) [CMS arXiv:2111.10431]

Get even deeper into stability region...

What's next?

- Simultaneous extraction of PDF, $\alpha_S(m_Z)$ and m_t $(m_t^{pole}, m_t(m_t), m_t^{MSR})$ seems the way to go
- Differential NNLO for $t\bar{t}$ are meanwhile available (also as PDF interpolation grids)
- Less PDF+ α_S dependent observables for m_t extraction under investigation μ_t

[ATLAS 1905.02302 CMS <u>2207.02270</u>]

• Most sensitivity to m_t still from the threshold: theory work on $M_{t\bar{t}}$ ongoing

e.g. Moch et al DESY 24-207 (in preparation)

need to bring all these peaces together...

What if there would be new physics?

Jet transverse momenta and $M_{t\bar{t}}$ would be affected by new operators (mostly dimension 6)

- Simultaneous extraction of PDF+ $\alpha_S(m_Z)$ and EFT couplings already in place [CMS arXiv:2111.10431]
- Framework for simultaneous extraction of PDF+ $\alpha_S(m_Z)$ + m_t and EFT couplings in place Shen, Lipka, et al arXiv:2407.16061

need to bring also these peaces together...