Extended scalar sectors - Focus on singlet extensions -

Tania Robens

Rudjer Boskovic Institute

Asymptotic Safety meets Particle Physics & Friends
DESY Hamburg
18.12.2024

After Higgs discovery: Open questions

Higgs discovery in $2012 \Rightarrow$ last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 - ⇒ search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - ⇒ e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

⇒ main test ground for this: particle colliders ←

Special role of the scalar sector

Higgs potential in the SM

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^\dagger \, \mathbf{\Phi} + \lambda \, \left(\mathbf{\Phi}^\dagger \, \mathbf{\Phi} \right)^2, \quad \mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

⇒ mass for Higgs Boson and Gauge Bosons

$$m_h^2\,=\,2\,\lambda\,v^2,\,m_W\,=\,g\,\frac{v}{2},\,m_Z\,=\,\sqrt{g^2+(g')^2}\,\frac{v}{2}$$

where v: Vacuum expectation value of the Higgs field, g, g': couplings in $SU(2) \times U(1)$

 \Rightarrow everything determined in terms of gauge couplings, $\nu\text{, and }\lambda$

form of potential determines minimum, electroweak vacuum structure

- ⇒ stability of the Universe, electroweak phase transition, etc
- full test requires checks of hhh, hhhh couplings
- ⇒ so far: only limits; possible only at future machines [HL-LHC: constraints on hhhh]

Models

- new scalars ⇒ models with scalar extensions
- many possibilites: introduce new $SU(2) \times U(1)$ singlets, doublets, triplets, ...
- unitarity ⇒ important sum rule*

$$\sum_{i} g_i^2(h_i) = g_{SM}^2$$

for coupling g to vector bosons

many scenarios ⇒ signal strength poses strong constraints

^{*} modified in presence e.g. of doubly charged scalars, see Gunion, Haber, Wudka, PRD 43 (1991) 904-912.

Other possible extensions

- A priori: no limit to extend scalar sector
- make sure you
 - have a suitable ew breaking mechanism, including a Higgs candidate at $\sim 125\,\mathrm{GeV}$
 - can explain current measurements
 - are not excluded by current searches and precision observables
- nice add ons:
 - can push vacuum breakdown to higher scales
 - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector
 - ...
- Multitude of models out there
- adding ew gauge singlets/ doublets/ triplets...
 - ⇒ new scalar states ←

How can we see new physics?

Different ways to see new physics effects

- Option 1: see a direct deviation, in best of all cases a bump, and/ or something similar ⇒ clear enhanced rates for certain final states, mediated by new physics
- Option 2: observe signatures that do not exist in SM, e.g. events with large missing energy (hint of model containting DM)
- Option 3: observe deviations in SM-like quantities which are small(ish): ⇒ loop-induced deviations, requiring precision measurements
- NB: these can in principle also be large $!! \Rightarrow$ all models floating around to explain m_W^{CDF}

Current (large) collider landscape

[https://europeanstrategy.cern/home]

pp colliders: LHC, FCC-hh

LHC: center-of-mass energy: 8/ 13/ 13.6 TeV, since

2009/ ongoing

HL-LHC: 14 TeV, high luminosity (2027-2040)

FCC-hh: 100 TeV, under discussion

 e^+e^- colliders: ILC/ CLIC/ FCC-ee, CePC

in plan, high priority in Europe, various center-of-mass energies discussed, priority $\sim 240-250\,{\rm GeV}$ "Higgs factories"

$$\mu^+\mu^-$$
 colliders

under discussion, early stages [EU-funded design study MuCol started 1.3.23]

Tania Robens Physics with singlets Asymptotic ea, DESY, 18.12.24

Very often: simple singlet extension

- rule of thumb: if you want to understand something complicated, start with an easy model
- simplest scenario for BSM scalars: Higgs singlet extension
- ⇒ add an additional scalar field that transforms as a singlet under SM gauge group
 - can add additional symmetry: very few free parameters
 - simplest case:

$$\mathbf{m_H}$$
, $\sin \alpha$, $\tan \beta$

• $\sin \alpha$: mixing angle relating gauge and mass eigenstates; $\tan \beta$: ratio of vevs, can be replaced by Γ_H , $\Gamma_{H \to h h}$, ...

Introduction Multi scalar final states Finite width effects Higgs factories Summary

Model subject to many constraints...

- many theoretical/ experimental constraints
- thorough description: see e.g. TR, T. Stefaniak, Eur.Phys.J.C 75 (2015) 104, Eur.Phys.J.C 76 (2016) 5, 268

[more recent update in F. Feuerstake, E. Fuchs, TR, D. Winterbottom, arXiv:2409.06651]

LHC: Multi scalar production modes

[TR, T. Stefaniak, J. Wittbrodt, Eur. Phys. J. C80 (2020) no.2, 151]

ADDING TWO REAL SCALAR SINGLETS

Scalar potential

$$\begin{split} \mathcal{V} = & \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \mu_{\mathrm{S}}^2 S^2 + \mu_{\mathrm{X}}^2 X^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_{\mathrm{S}} S^4 + + \lambda_{\mathrm{X}} X^4 + \\ & \lambda_{\Phi \mathrm{S}} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi \mathrm{X}} \Phi^{\dagger} \Phi X^2 + \lambda_{\mathrm{SX}} S^2 X^2. \end{split}$$

Imposed $\mathbb{Z}_2 \times \mathbb{Z}_2'$ symmetry, which is spontaneously broken by singlet vevs.

 \Rightarrow three \mathcal{CP} -even neutral Higgs bosons: h_1, h_2, h_3

Two interesting cases:

Case (a): $\langle S \rangle \neq 0, \langle X \rangle = 0 \Rightarrow X$ is DM candidate:

Case (b): $\langle S \rangle \neq 0, \langle X \rangle \neq 0 \Rightarrow$ all scalar fields mix.

Again, Higgs couplings to SM fermions and bosons are universally reduced by mixing.

Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

Possible production and decay patterns

$$M_1 \leq M_2 \leq M_3$$

Production modes at pp and decays

$$pp \rightarrow h_3 \rightarrow h_1 h_1;$$
 $pp \rightarrow h_3 \rightarrow h_2 h_2;$
 $pp \rightarrow h_2 \rightarrow h_1 h_1;$ $pp \rightarrow h_3 \rightarrow h_1 h_2$

$$h_2 \rightarrow SM; h_2 \rightarrow h_1 h_1; h_1 \rightarrow SM$$

 \Rightarrow two scalars with same or different mass decaying directly to SM, or h_1 h_1 h_1 , or h_1 h_1 h_1

 $[h_1 \text{ decays further into SM particles}]$

[BRs of
$$h_i$$
 into $X_{\text{SM}} = \frac{\kappa_i \Gamma_{h_i \to X}^{\text{SM}}(M_i)}{\kappa_i \Gamma_{\text{tot}}^{\text{SM}}(M_i) + \sum_{j,k} \Gamma_{h_j \to h_j} h_k}$; κ_i : rescaling for h_i]

Introduction

Finite width effects

AS **BP1**: $h_3 \rightarrow h_1 h_2$ ($h_3 = h_{125}$)

SM-like decays for both scalars: $\sim 3\,\mathrm{pb}$; h_1^3 final states: $\sim 3\,\mathrm{pb}$

AS BP2: $h_3 \rightarrow h_1 h_2$ ($h_2 = h_{125}$)

SM-like decays for both scalars: $\sim 0.6 \,\mathrm{pb}$

- AS BP3: $h_3 \rightarrow h_1 h_2$ ($h_1 = h_{125}$)
 - (a) SM-like decays for both scalars $\sim 0.3 \,\mathrm{pb}$; (b) h_1^3 final states: $\sim 0.14 \,\mathrm{pb}$
 - **S BP4:** $h_2 \rightarrow h_1 h_1$ ($h_3 = h_{125}$)

up to 60 pb

Introduction

S BP5: $h_3 \rightarrow h_1 h_1$ ($h_2 = h_{125}$)

up to 2.5 pb

S BP6: $h_3 \rightarrow h_2 h_2$ ($h_1 = h_{125}$)

SM-like decays: up to 0.5 pb; h_1^4 final states: around 14 fb

ntroduction **Multi scalar final states** Finite width effects Higgs factories Summary

LHC: Multi scalar production modes

[TR, T. Stefaniak, J. Wittbrodt, Eur. Phys. J. C80 (2020) no.2, 151;

updates from arXiv:2305.08595, HHH Workshop talk, 16.7.23, for Catch22+2 Dublin, 05/24, and for this workshop]

2 real singlet extension \Rightarrow 2 additional scalars ($M_1 \le M_2 \le M_3$; $M_i \in [0; 1\text{TeV}]$) [1 mass always at 125 GeV, others free]

new plots: updates from paper with full Run II results

[Eur.Phys.J.C 84 (2024) 5, 493, $b\,\bar{b}\tau^+\tau^-$ and $b\,\bar{b}\mu^+\mu^-$ final states] [JHEP 07 (2023) 040, $b\,\bar{b}\tau^+\tau^-$] asymmetric. triple h₁ (3.5/0.25 pb)300 symmetric, no 11,10017 h₁₂₅ involved (2.5/60 pb) $M \cdot IGeVI$

Tania Robens

Physics with singlets

Asymptotic ea, DESY, 18.12.24

Exploration of $h_1h_1h_1$ final state at HL-LHC

[A. Papaefstathiou, TR, G. Tetlalmatzi-Xolocotzi, JHEP 05 (2021) 193]

• 3 scalar states h_1 , h_2 , h_3 that mix

concentrate on
$$p\,p\,\rightarrow\,h_3\,\rightarrow\,h_2\,h_1\,\rightarrow\,h_1\,h_1\,h_1\,\rightarrow\,b\,\bar{b}\,b\,\bar{b}\,b\,\bar{b}$$

- ⇒ select points on BP3 which might be accessible at HL-LHC
- ⇒ perform detailed analysis including SM background, hadronization, ...
 - tools: implementation using full t, b mass dependence,
 leading order [UFO/ Madgraph/ Herwig] [analysis: use K-factors]

ntroduction Multi scalar final states Finite width effects Higgs factories Summary

$h_1h_1h_1$ production cross sections, leading order [pb]

[using interpolation]

highest values: $\sim 50 \mathrm{fb}$ for $M_2 \sim 250 \, \mathrm{GeV}, \, M_3 \sim 400 - 450 \mathrm{GeV}$

This plane was investigated in first experimental hhh search!! ATLAS, Run 2, arXiv:2411.02040

Benchmark points and results

Introduction

(M_2, M_3) [GeV]	$\sigma(pp \to h_1 h_1 h_1)$ [fb]	$\sigma(pp o 3bar{b})$ [fb]	$ \operatorname{sig} _{300\mathrm{fb}^{-1}}$	sig _{3000fb} -1
(255, 504)	32.40	6.40	2.92	9.23
(263, 455)	50.36	9.95	4.78	15.11
(287, 502)	39.61	7.82	4.01	12.68
(290, 454)	49.00	9.68	5.02	15.86
(320, 503)	35.88	7.09	3.76	11.88
(264, 504)	37.67	7.44	3.56	11.27
(280, 455)	51.00	10.07	5.18	16.39
(300, 475)	43.92	8.68	4.64	14.68
(310, 500)	37.90	7.49	4.09	12.94
(280, 500)	40.26	7.95	4.00	12.65

discovery, exclusion, still viable

⇒ at HL-LHC, all points within reach ←

troduction Multi scalar final states Finite width effects Higgs factories Summary

What about other channels?

[extrapolation of $36 \, \mathrm{fb}^{-1}$ and HL projections]

\Rightarrow model can be tested from various angles \Leftarrow

[Phys. Rev. Lett. 122 (2019) 121803; Phys. Lett. B800 (2020) 135103; JHEP 06 (2018) 127; CERN Yellow Rep. Monogr. 7 (2019) 221; Eur. Phys. J. C78 (2018) 24; ATL-PHYS-PUB-2018-022

Tania Robens Physics with singlets Asymptotic ea, DESY, 18.12.24

Introduction

Experiments: often use factorized approach:

$$pp \rightarrow X, X \rightarrow YZ$$

- quantum mechanics: only stable particles are defined in **S-matrix elements**, everything else approximation
- in reality: case by case study
- wrong: assume factorization always works

ntroduction Multi scalar final states **Finite width effects** Higgs factories Summary

From a recent overview talk at Higgs 2024...

Search strategy

- Most analyses are designed to perform (quasi) model-independent searches for a bump in a smoothly falling mass spectrum
 - Perform maximum likelihood fit to set upper limits on production cross section and/or branching fraction
 - Interpretation in a large variety of different models

- For complicated final states, train neural networks (NNs) or boosted decision trees (BDTs) to separate signal from backgrounds
 - Probe BDT/NN response distribution

(slide from D. Duda, "Search for new high-mass scalars at the LHC", Higgs 2024)

Is this really what we will see ??

Tania Robens Physics with singlets Asymptotic ea. DESY. 18.12.24

4

Width from the theory prespective - a mini-introduction

Introduction of width

• S-matrix: complex quantity; at leading order, poles can appear for $p^2 = M^2$

artefact of finite order calculation

- solution: resummation of self-energy contributions near resonance \Rightarrow leads to modification $\frac{1}{p^2 M^2 + \sum_{P}(p^2)}$
- $\Sigma_R(M^2)$ related to total width Γ via optical theorem

$$Im\Sigma_R = M\Gamma$$

with $\Gamma = \sum_{i} \Gamma_{i}$, i denoting partial widths

• leads to form $\sim \frac{1}{p^2 - M^2 + i M \Gamma}$ [Breit-Wigner]

Tania Robens

still many open issues, in particular gauge dependence \Rightarrow several solutions exist, important for electroweak precision measurements

Narrow width approximation

 $[\mathsf{see}\ \mathsf{e.g.}\ \mathsf{also}\ \mathsf{Nucl.Phys.B}\ \mathsf{814}\ (2009)\ \mathsf{195-211};\ \mathsf{Diploma}\ \mathsf{thesis}\ \mathsf{C.}\ \mathsf{Uhlemann},\ \mathsf{Wuerzburg},\ \mathsf{'07}]$

• in the limit $\Gamma \rightarrow 0$:

$$\frac{1}{|p^2 - M^2 + i M \Gamma|^2} \rightarrow \frac{\pi}{M \Gamma} \delta \left(p^2 - M^2 \right)$$

⇒ leads to factorized approach:

$$\sigma_{ab \to c \to de} \to \sigma_{ab \to c} \times \underbrace{\frac{\Gamma_{c \to de}}{\Gamma}}_{CD}$$

• formal error: $\mathcal{O}\left(\frac{\Gamma}{M}\right)$

factorized approach

• even QM says: should really consider

$$\mathcal{M}_{ab \to de}$$

Introduction Multi scalar final states Finite width effects Higgs factories Summary

Interference effects

 matrix element M for process going through s-channel resonance as well as other diagrams:

$$\mathcal{M}_{tot} = \mathcal{M}_{S} + \mathcal{M}_{rest}$$

• squared ME going into phase space integration:

$$|\mathcal{M}_{\text{tot}}|^2 = |\mathcal{M}_{\text{S}}|^2 + |\mathcal{M}_{\text{rest}}|^2 + \underbrace{2 \operatorname{Re} \left[\mathcal{M}_{\text{S}} \mathcal{M}_{\text{rest}}^*\right]}_{\text{Interference}}$$

- resonance: first term dominant
 - ⇒ this is what goes into NWA
- factorized approach:

assume $|\mathcal{M}_S|^2$ is dominant, and in addition that NWA holds

200

Results for specific point [13 TeV, $\int \mathcal{L} = 139 \, \text{fb}^{-1}$]

[in collaboration with F. Feuerstake, E. Fuchs, D. Winterbottom, arXiv:2409.06651]

- studied several benchmark points in detail
- they are **defined via distinct features** that could or could not have an impact (for time reasons, can only show 2!)

Benchmark	$\sin\alpha$	$\tan\beta$	m _H [GeV]	Γ _H [GeV]	$\kappa_{\lambda_{hhh}}$	σ [fb]	$\sigma_{ m S_H}$ [fb]	Accessible in Run-3	Feature
BM1	0.16	1.0	620	4.6	0.96	50.5	13.5	✓	$Max (\Delta \sigma)_{rel}$
BM2	0.16	0.5	440	1.5	0.96	91.6	56.4	✓	$Max (\Delta \sigma)_{rel}^{\Sigma}$
BM3	0.16	0.5	380	8.0	0.96	119.8	90.1	✓	$\text{Max } (\Delta \sigma)_{\text{rel}}^{\sum} \text{ with } (\Delta \sigma)_{\text{rel}} < 1\%$
BM4	-0.16	0.5	560	3.0	0.96	51.4	15.5	✓	Max non-res. within $m_H \pm 10\%$
BM5	0.08	0.5	500	0.6	0.99	40.6	8.1		Max non-res. within $m_H \pm 10\%$
BM6	0.16	1.0	680	6.1	0.96	44.8	8.4	✓	Max m _H
BM7	0.15	1.1	870	9.5	0.96	36.8	2.3		Max m _H
BM8	0.24	3.5	260	0.6	0.87	374.2	357.3	✓	$Max \kappa_{\lambda_{hhh}} - 1 $
BM9	0.16	1.0	800	9.8	0.96	38.9	3.6		$\max \frac{\Gamma_H}{m_H}$

additional quantities:

 $(\Delta \sigma)_{\rm rel}^{\Sigma}$: often positive/ negative feature before/ after mass peak

⇒ sum of absolute values of interferences before and after

correct, no interference, SM+NP, NP only

left: before smearing right: after smearing

Extra scalars at Higgs factories (e^+e^- @ 240 - 250 GeV)

various production modes possible

- 1) easiest example: $e^+e^- \rightarrow Z h_1$, onshell production interesting up to $m_1 \sim 160 \, {\rm GeV}$
- 2) in models with various scalars: e.g. also $e^+e^- \rightarrow h_1 h_2$ (e.g. from 2HDMs); example processes and bounds from LEP in Eur.Phys.J.C 47 (2006) 547-587 again: for onshell production, $\sum_i m_i \leq 250\,\mathrm{GeV}$
- 3) another (final) option: look at $e^+e^- \rightarrow h_i Z, h_i \rightarrow h_j h_k$

already quite a few studies for 1), 3) available

Introduction Multi scalar final states Finite width effects **Higgs factories** Summary

Scalar strahlung for additional light scalars

$$e^+\,e^-\,
ightarrow\,$$
 $Z^*\,
ightarrow\,$ $Zh,\,e^+\,e^-\,
ightarrow\,$ $uar{
u}h\,$ (VBF)

[cross sections for e^+e^- at $\sqrt{s}=250\,\mathrm{GeV}$ using Madgraphb; LO analytic expressions e.g. in Kilian ea, Phys.Lett.B 373 (1996) 135-140]

- rule of thumb: rescaling $\lesssim 0.1$
- \Rightarrow maximal production cross sections around 50 fb
- $\bullet \sim 10^5$ events using full luminosity

Asymptotic ea, DESY, 18.12.24

Projections for additional scalar searches

[P. Drechsel, G. Moortgat-Pick, G. Weiglein, Eur.Phys.J.C 80 (2020) 10, 922]

estimate of ILC sensitivity based on validation using LEP results ILC: $\sqrt{s} = 250 \, \mathrm{GeV}$, $\int \mathcal{L} = 2 \, \mathrm{ab}^{-1}$; S95: rescaling limit

Asymptotic ea, DESY, 18.12.24

Singlet extensions [TR, arXiv:2203.08210 and Universe 8 (2022) 286]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur. Phys. J. C 80 (2020) 2, 151]

 low-low: both additional scalars below 125 GeV; high-low: one new scalar above 125 GeV ntroduction Multi scalar final states Finite width effects **Higgs factories** Summary

Possible model reach

[plot courtesy of F. Zarnecki, ILC results from Brudnowski ea, arXiv:2409.19761]

Eur.Phys.J.C 80 (2020) 2, 151; Symmetry 15 (2023) 27; JHEP 01 (2024) 107; JHEP 03 (2016) 007

Asymptotic ea, DESY, 18.12.24

Introduction Multi scalar final states Finite width effects Higgs factories Summary

Summary

Models with extended scalar sectors provide an interesting setup to introduce new scalar particles, with different CP/ charge quantum numbers

⇒ leads to many **new interesting signatures**, some of which are not yet covered by current searches

some of these: also interesting connections of electroweak phase transitions/ gravitational waves/ etc

Next steps

• (re) investigate models with extended scalar sectors at e^+e^- colliders [ECFA effort ongoing]

Many things to do

Appendix

Introduction Multi scalar final states Finite width effects Higgs factories **Summary**

What about extensions?

• in principle: no limit

can add more singlets/ doublets/ triplets/ ...

⇒ consequence: will enhance particle content

additional (pseudo)scalar neutral, additional charged, doubly charged, etc particles

common feature:

new scalar states, which can now also be produced/ decay into each other/ etc

Introduction

2HDMs, 3HDMs: add additional charged scalars

- e.g. 2 real scalars \Rightarrow 3 CP-even neutral scalars
- 2HDM → 2 CP-even, one CP odd neutral scalar, and charged scalars
- •

ATLAS-PHYS-PUB-2021-031

Models with extended scalar sectors

Constraints

Theory

minimization of vacuum (tadpole equations), vacuum stability, positivity, perturbative unitarity, perturbativity of couplings

Experiment

```
provide viable candidate @ 125 GeV (coupling strength/ width/ ...); agree with null-results from additional searches and ew gauge boson measurements (widths); agree with electroweak precision tests (typically via S,T,U); agree with astrophysical observations (if feasible)
```

Limited time ⇒ next slides highly selective...

 $[long\ list\ of\ models,\ see\ e.g.\ https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG3]$

tools used: HiggsBounds, HiggsSignals, 2HDMC, micrOMEGAs, ...

Examples for current constraints:

Singlet extension, Z_2 symmetric: + 1 scalar particle

[TR, arXiv:2209.15544; updated using HiggsTools]

$$\mathbf{V}(\mathbf{\Phi}, \mathbf{S}) = -\mathbf{m}^2 \mathbf{\Phi}^{\dagger} \mathbf{\Phi} - \mu^2 \mathbf{S}^2 + \lambda_1 (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})^2 + \lambda_2 \mathbf{S}^4 + \lambda_3 \mathbf{\Phi}^{\dagger} \mathbf{\Phi} \mathbf{S}^2$$

new parameters: m_2 , $\sin \alpha$ [= 0 for SM], $\tan \beta$ [= ratio of vevs]

[update from Review in Physics (2020) 100045]

[see e.g. Pruna, TR, Phys. Rev. D 90, 114018;

(Bojarski, Chalons,) Lopez-Val, TR, Phys. Rev. D 90, 114018, JHEP 1602 (2016) 147;

(Ilnicka), TR, Stefaniak, EPJC (2015) 75:105, Eur.Phys.J. C76 (2016) no.5, 268, Mod.Phys.Lett. A33 (2018)]

Tania Robens Physics with singlets Asymptotic ea, DESY, 18.12.24

Reminder: decays of a SM-like Higgs of mass $M \neq 125\,\mathrm{GeV}$

(using HDecay, courtesy J.Wittbrodt)

(https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ LHCHXSWGCrossSectionsFigures)

Testing the Higgs potential

remember:

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^\dagger \, \mathbf{\Phi} + \lambda \, \left(\mathbf{\Phi}^\dagger \, \mathbf{\Phi} \right)^2, \quad \mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

also predicts hhh and hhhh interactions

• so far: only constraints

$$\Longrightarrow$$
 future accessibility ? \Longleftarrow

Start with resonance enhanced BSM scenarios for hhh

BP3: $h_3 \rightarrow h_1 h_2$ $(h_1 = h_{125})$ [up to 0.3 pb]

BP3

Introduction

$$\sigma(pp \rightarrow h_3) \simeq 0.06 \cdot \sigma(pp \rightarrow h_{SM})|_{m=M_3}$$

 $BR(h_3 \rightarrow h_{125}h_2)$ mostly $\sim 50\%$.

if $M_2 < 250 \, \mathrm{GeV}$: $\Rightarrow h_2 \to \mathsf{SM}$ particles.

if $M_2 > 250 \,\text{GeV}$:

 $\Rightarrow BR(h_2 \to h_{125}h_{125}) \sim 70\%$,

⇒ spectacular triple-Higgs signature

[up to 140 fb; maximal close to thresholds]

$$[\kappa_3 = 0.24] [\Gamma_3/M_3 < 0.05]$$

bounds from $p p \rightarrow h_3 \rightarrow h_1 h_2$ [CMS, Run, II, JHEP 11 (2021) 057]

What about LHC search interpretations?

- so far: 2 searches (by CMS) with public results and TRSM interpretations
- both target $p p \rightarrow X \rightarrow Y h$
- final states: $b \, \bar{b} \, b \, \bar{b}$ [2204.12413], $b \, \bar{b} \, \gamma \, \gamma$ [CMS-PAS-HIG-21-011]
- compares to maximal rates in TRSM and NMSSM

[TRSM rates available from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG3EX]

 Work in progress: Optimized automated scan for maximal rates for any final states [A. Ghosh, TR, J. Veatch, R. Zhang] troduction Multi scalar final states Finite width effects Higgs factories **Summary**

Results [using non-optimized scan]

Current back of the envelope accuracy estimates

[for triple couplings, from M. Selvaggis talk at Higgs Pairs mini-workshop 09/21, and Snowmass WPs arXiv:2203.07622 (ILC)/ arXiv:2203.07646 (C^3)]

- HL-LHC/ ILC₂₅₀/ CLIC₃₈₀/ CEPC₂₄₀/ $C_{250}^3 \sim 50\%$
- FCC-ee_{240/365}, **ILC**₅₀₀, $C_{550}^3 \sim 20 27\%$
- \bullet ILC_{500-1000GeV}, CLIC_{3TeV} $\sim 8-11\%$
- FCC-hh $\sim 3.5 8\%$
- $\mu \mu_{30\text{TeV}} \sim 2 3\%$

[HH/ single H; recent updates not included]

? What about quartic couplings ?

Incomplete list of papers looking at quartic coupling

- W. Bizon, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders, JHEP 10 (2019) 267 [1810.04665].
- S. Borowka, C. Duhr, F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Probing the scalar potential via double Higgs boson production at hadron colliders, JHEP 04 (2019) 016 [1811.12366].
- T. Liu, K.-F. Lvu, J. Ren and H.X. Zhu, Probing the quartic Higgs boson self-interaction, Phys. Rev. D98 (2018) 093004 [1803.04359].
- J. Alison et al., Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020) 100045 [1910.00012].
- A. Papaefstathiou and K. Sakurai, Triple Higgs boson production at a 100 TeV proton-proton collider, JHEP 02 (2016) 006 [1508.06524].
- C.-Y. Chen, Q.-S. Yan, X. Zhao, Y.-M. Zhong and Z. Zhao, Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider, Phys. Rev. D93 (2016) 013007 [1510.04013].
- D.A. Dicus, C. Kao and W.W. Repko, Self Coupling of the Higgs boson in the processes p p → ZHHH + $X \text{ and } p p \rightarrow WHHH + X$, Phys. Rev. D93 (2016) 113003 [1602.05849].
- R. Contino et al., Physics at a 100 TeV pp collider; Higgs and EW symmetry breaking studies. CERN Yellow Rep. (2017) 255 [1606.09408].
- B. Fuks, J.H. Kim and S.J. Lee, Scrutinizing the Higgs quartic coupling at a future 100 TeV proton-proton collider with taus and b-jets, Phys. Lett. B771 (2017) 354 [1704.04298].
- A. Papaefstathiou, G. Tetlalmatzi-Xolocotzi and M. Zaro, Triple Higgs boson production to six b-iets at a 100 TeV proton collider, Eur. Phys. J. C 79 (2019) 947 [1909.09166]. [-1.7; 13]
- F. Maltoni, D. Pagani and X. Zhao, Constraining the Higgs self-couplings at e+e- colliders, JHEP 07 (2018) 087 [1802.07616]. CLIC_{3TeV} [-5; 7]
- M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini and X. Zhao, Measuring the quartic Higgs self-coupling at a multi-TeV muon collider, JHEP 09 (2020) 098 [2003.13628]. all [0; 2] best (30 TeV) [0.7; 1.5]4日本4周本4日本4日本 日

	Benchmark scan no 1	benchmark scan no 2
m_{h_1}	$125.09~{ m GeV}$	$125.09~\mathrm{GeV}$
m_{h_2}	$300 { m GeV}$	$600 { m GeV}$
$ anar{eta}$	3.3	1.6
$\sin heta$	0.17	0.17
Γ_{h_2}	$0.5408 { m GeV}$	$4.9802 {\rm GeV}$
$\mathrm{BR}_{h_2 o h_1h_1}$	0.5519	0.3396
$\Gamma_{ ilde{h_2}}$	$20 { m MeV}$	$20 { m MeV}$
	Cross Sections	
$pp o h_1 h_1$	(69.858 ± 0.015) fb	(25.573 ± 0.101) fb
$pp o h_2$	(106.47 ± 0.003) fb	(23.075 ± 0.0007) fb
$pp \to h_2 \to h_1 h_1$	(58.628 ± 0.002) fb	(7.8852 ± 0.0003) fb
$pp o h_1 h_1 ackslash h_2$	(14.179 ± 0.0008) fb	(14.083 ± 0.0007) fb
$pp ightarrow ilde{h_2} ightarrow h_1 h_1$	$(1588.6 \pm 0.08) \mathrm{fb}$	$(1951.2 \pm 0.05) { m fb}$

Another topic: finite width effects

[in collaboration with F. Feuerstake/ E. Fuchs/ D. Winterbottom]

- scenario: heavy resonance decaying to h_{125} h_{125} [already partially discussed in Rev.Phys. 5 (2020) 100045 and references therein]
- scenario discussed here:

$$m_H = 300 \, {\rm GeV}; \, \sin \theta = 0.17; \, \tan \beta = 3.3$$

 $\Gamma_H = 0.54 \, {\rm GeV}, \, {\rm BR}_{H \to h \, h} = 0.55$
 $\sigma_{hh} = 69.77(4) \, {\rm fb}, \, \sigma_{{\rm via}H} = 58.65(2) \, {\rm fb}, \, \sigma_{{\rm no}H} = 14.195(7) \, {\rm fb}$

Interference:
$$\sigma_{hh} - (\sigma_{viaH} + \sigma_{noH}) = -3.08(5) \text{ fb}$$

Another topic: finite width effects

[in collaboration with F. Feuerstake/ E. Fuchs/ D. Winterbottom]

- scenario: heavy resonance decaying to h₁₂₅ h₁₂₅
 [already partially discussed in Rev.Phys. 5 (2020) 100045 and references therein]
- scenario discussed here:

$$m_H = 600 \, {\rm GeV}; \, \sin \theta = 0.17; \, \tan \beta = 1.6$$

 $\Gamma_H = 4.98 \, {\rm GeV}, \, {\rm BR}_{H \to h \, h} = 0.34$
 $\sigma_{hh} = 26.746(7) \, {\rm fb}, \, \sigma_{{\rm via}H} = 7.90(1) \, {\rm fb}, \, \sigma_{{\rm no}H} = 15.11(1) \, {\rm fb}$

Interference: $\sigma_{hh} - (\sigma_{viaH} + \sigma_{noH})$ [= 3.74(2) fb]

Results [13 TeV, $\int \mathcal{L} = 139 \, \text{fb}^{-1}$]

ntroduction Multi scalar final states Finite width effects Higgs factories **Summary**

Singlet extensions

[TR, Symmetry 2023, 15(1), 27 and Springer Proc.Phys. 292 (2023) 141-152]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur. Phys. J. C 80 (2020) 2, 151]

cross sections at 250 GeV

convoluted with decay rates

final states: $Z b \bar{b}$, $Z h_1 h_1$, $Z c \bar{c}$, $Z \tau^+ \tau^-$

$h \rightarrow 4j/4b/4c$ final states

[Z. Liu, L.-T. Wang, H. Zhang, Chin.Phys.C 41 (2017) 6, 063102]

95% **CL** bounds,
$$\sqrt{s} = 240 \,\text{GeV}, \int \mathcal{L} = 5 \,\text{ab}^{-1}$$

Singlet extension, with connection to strong first-order electroweak phase transition

[J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D 101 (2020) 11, 115035] [see also M. Carena, Z. Liu, Y. Wang, JHEP 08 (2020) 107]

blue band = strong first-order electroweak phase transition

comment: current constraints lead to prediction $\lesssim 10^{-1}$

ntroduction Multi scalar final states Finite width effects Higgs factories **Summary**

Possible model reach

[slide from A.F.Zarnecki, CEPC 2024]

$S \rightarrow \tau^+ \tau^-$

Tania Robens

Cross section limits

Cross section limits for $\sigma(e^+e^- \to ZS) \cdot BR(S \to \tau\tau)$ compared with allowed scenarios in different models

Two-Real-Singlet Model thanks to Tania Robens

See arXiv:2209.10996 arXiv:2305.08595

Two Higgs-Doublet Model thanks to Kateryna Radchenko thdmTool package, see arXiv:2309.17431

Minimal R-symmetric Supersymmetric SM thanks to Wojciech Kotlarski arXiv:1511.09334

A.F. Żarnecki (University of Warsaw) Light Higgs bosons - experimen

pril 9, 2024 18 / 19