Introduction to MaRTIn

Massive Recursive Tensor Integration

Joachim Brod

Workshop "Asymptotic Safety", DESY Hamburg, December 18, 2024

In collaboration with Lorenz Hüdepohl, Emmanuel Stamou, and Tom Steudtner Comput.Phys.Commun. 306 (2025) 109372 [2401.04033]

Landscape

- All-purpose tools:
 - MaRTIn two-loop; based on FORM
 - FeynCalc one(two)-loop; based on mathematica
 - PackageX (no longer actively supported)
 - FeynArts + FormCalc + LoopTools (one-loop; numerical evaluation)
- Special tools:
 - Diagram generation: qgraf
 - IBP reduction: LiteRed, FIRE, Reduze, Kira
 - IBP & packages for special problems: MINCER, MATAD, FORCER, FMFT

• + . . .

Scope of MaRTIn

• Fully automated:

- Main code written in FORM
- python3 wrapper code
- Calculational tasks organized via a Makefile
- The "physics" (current version):
 - Geared towards calculating anomalous dimensions and matching conditions
 - Any massive/massless two-loop vacuum diagram (relativistic propagators) [Davydychev, Tausk Nucl.Phys.B 397 (1993) 123; Bobeth et al. hep-ph/9910220]
 - Infrared rearrangement and different schemes for γ_5
 - Expand around $d = 4 2\epsilon$ and $d = 3 2\epsilon$
 - User can provide new models

Installation

- Download from this public gitlab repository
- Requisites:
 - FORM, qgraf, python, ...
- Setup:
 - Source code directory (e.g. /home/username/martin/)
 - Copy .martin.conf into home directory
 - Working directory should contain the subdirectories
 - models (contains the model files, e.g. SM)
 - problems (contains info about the process to be calculated)
 - prc (may contain user-specified FORM routines)
 - results (contains the results, populated by MaRTIn)

Workflow

- MaRTIn uses qgraf to generate diagrams (FORM / .pdf)
- Feynman rules provided via FORM model file
 - MaRTIn constructs amplitude, including sorting of fermion lines
- Dirac algebra more later
- Tensor reduction / Passarino-Veltman
- IBP reduction to master integrals a la Davydychev-Tausk
- Insertion of master integrals

Momentum expansion vs. IRA

- Currently, only vacuum integrals. Two options:
- Taylor expansion in external momenta
- Infrared Rearrangement ("IRA")
 - Based on an exact decomposition of propagators [Chetyrkin et al. hep-ph/9711266]

$$rac{1}{(p+q)^2-M^2} = rac{1}{p^2-m_{
m IRA}^2} + rac{M^2-m_{
m IRA}^2-2\,p\cdot q-q^2}{p^2-m_{
m IRA}^2}rac{1}{(p+q)^2-M^2}$$

- p loop momentum
- q external momentum
- M a generic mass (may be zero)
- $m_{\rm IRA}^2$ an IR regulator mass

Dirac algebra

- Dirac algebra is implemented in d spacetime dimensions
- MaRTIn performs traces over closed fermion lines
 - Three options for $\gamma_5 = (i/4!)\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$ (*):
 - ullet define DSCHEME "NDR": use $\gamma_5\gamma^\mu=-\gamma^\mu\gamma_5$ if no γ_5 in trace
 - define DSCHEME "HV": use $\gamma_5\gamma^{\mu} = -\gamma^{\mu}\gamma_5$ for $\mu = 0, 1, 2, 3$; $\gamma_5\gamma^{\mu} = \gamma^{\mu}\gamma_5$ otherwise
 - define DSCHEME "LARIN": replace γ_5 using (*), treat Levi-Civita "projector" onto $\mu = 0, 1, 2, 3$
 - define DSCHEME "sNDR": ask Tom S. about it
- MaRTIn sorts open fermion lines into a standard ordering. For instance,
 - DIRAC(1,p1,mu1,mu2)*DIRAC(2,p2,mu1,mu2) $\leftrightarrow p_1 \gamma^{\mu_1 \mu_2} \otimes p_2 \gamma_{\mu_1 \mu_2}$
 - DIRAC(1,hat,mu1)*DIRAC(2,mu1,G5) $\leftrightarrow \hat{\gamma}^{\mu_1} \otimes \gamma_{\mu_1} \gamma_5$

The loop.dat file

- Problem-specific information is contained in the problem file
- Contains several FORM folds
- Exception: the QGRAF fold specifies the diagrams via literal qgraf syntax:

```
*--#[ QGRAF :
    model = qmodel.prop.lag;
    model = qmodel.vrtx.lag;
    in = field1[q1], field2[q2];
    out = field3[q3], field4[q4];
    loops = 2;
    loop_momentum = p;
    options = onepi;
*--#] QGRAF :
```

The loop.dat file

• The MAIN fold contains all other options, e.g.,:

```
*--#[ MAIN :
#define NM "2"
#define MODEL1 "modelA"
#define MODEL2 "modelB"
#define EXPDENO "1"
    -- or --
#define IRA "1"
#define FINALEPLIM "-1"
#define DSCHEME "NDR/HV/LARIN/SNDR"
*--#] MAIN :
```

- There are many more options, see the manual for details
- Plus additional FORM folds to allow user interference at "default" places

Workflow

Example: one-loop up-quark QCD self energy

Example: one-loop up-quark QCD self energy

```
*--#[ QGRAF :
model = 'sm.prop.lag';
model = 'sm.vrtx.lag';
in = fu[q1];
out = fu[q1];
loops = 1;
loop_momentum = p;
options =;
true = iprop[g, 1, 1] ;
*--#] QGRAF :
*--#[ MAIN :
#define FINALEPLIM "-1"
#define NM "1"
#define MODEL1 "SM"
#define GAUGEG "gaugeg"
#define IRA "1"
#define DSCHEME "NDR"
*--#] MAIN :
```

Example: one-loop up-quark QCD self energy

Running

martin problems/SM/loop.1_uu.dat

gives

```
Computing xxx/user_template/results/SM/form.1_uu/dia1.sav ...
FORM 4.2.1 (Feb 6 2019, v4.2.1-3-g558b01f) 64-bits Run: <date and time>
    #-
    dia1 =
    + ep^-1 * (
        - 3/4*UbarSp(fu,su3col,j1,mom,q1)*DIRAC(1,one)*USp(fu,su3col,j1,mom,
        q1)*i_*pi^-1*alphas*Mup*CF
        - 1/4*UbarSp(fu,su3col,j1,mom,q1)*DIRAC(1,one)*USp(fu,su3col,j1,mom,
        q1)*i_*pi^-1*xiqg*alphas*Mup*CF
        + 1/4*UbarSp(fu,su3col,j1,mom,q1)*DIRAC(1,q1)*USp(fu,su3col,j1,mom,
        q1)*i_*pi^-1*xiqg*alphas*CF
        );
```

0.10 sec out of 0.10 sec Done computing xxx/user_template/results/SM/form.1_uu/dia1.sav.

MaRTIn finished.

$$\texttt{dia1} = -\frac{i\alpha_s}{4\pi} C_F \frac{1}{\varepsilon} \bar{u}(\boldsymbol{q}_1, j_1) \Big[\xi_G \phi_1 + m_u(3 + \xi_G) \Big] u(\boldsymbol{q}_1, j_1) \,.$$

Implementing a new model

- Two necessary ingredients:
 - qgraf model file (propagators and vertices)
 - FORM model file
- Model implementation is somewhat of a bottleneck for the use
- Need to follow standard notation for propagators and vertices
- Most vertices are already implemented in generic form
 - E.g. vector-scalar-scalar $\propto (q_2-q_3)^{\mu}$
- Any group structure needs to be implemented by hand
 - QCD color algebra is already implemented for many cases
- Advice: Read the manual, start with modifying model_SM, contact the authors if in doubt

Application: electron EDM in the 2HDM

- The electron EDM is a sensitive of non-CKM CP violation
 - $\frac{d_e}{4e} \, \bar{e} \sigma_{\mu\nu} F^{\mu\nu} \gamma_5 e \quad \rightarrow \quad \frac{d_e}{e} \, E \cdot s$
- The experimental bound is $d_e < 4.1 \times 10^{-30} e \, {\rm cm}$ @ 90% CL [Roussy et al. 2212.11841]
- Electron EDM in the most general 2HDM [Altmannshofer et al. 2410.17313]
 - Extend SM by second Higgs doublet
 - Extended scalar sector: three neutral and one charged Higgs boson
 - Generically, expect new CP phases in Yukawa couplings and Higgs potential
 - Popular "toy" model for electroweak baryogenesis
- In our context: non-trivial check of MaRTIn

Barr-Zee diagrams

non-Barr-Zee diagrams

Technical scope of calculation

• We evaluated all closed fermion loops in the 't Hooft-Veltman (HV) scheme

- Counterterm diagrams are evanescent (but non-zero) in HV
- Divergent counterterm insertions lead to additional finite contributions
- Final results agree with naive evaluation in NDR scheme
- Whole calculation performed in generalized R_{ξ} gauge
 - Background field gauge for external states
 - $\bullet\,$ Gauge propagators and would-be Goldstone masses are ξ dependent
 - All physical results are manifestly ξ independent

Conclusion

- MaRTIn is a versatile all-in-one tool for multiloop calculations
 - Currently, up to two-loop vacuum integrals with any masses
- Not (yet well) optimized for speed
- Implementation of new models possible (if somewhat cumbersome)
- Active work on extension up to four-loop