

Spontaneous symmetry breaking at all temperatures

Bilal Hawashin

Asymptotic Safety Meets Particle Physics and <u>Friends</u>

18.12.2024

Collaborators

Junchen Rong (Paris)

Michael Scherer (Bochum)

SSB at all T: Why not?

Spontaneous symmetry breaking usually only occurs at sufficiently low temperatures

Simple argument:

Free energy $F=E-TS\,$ minimized at all temperatures

- → at high temperatures: entropy is maximized
- usually: high entropy disorder and symmetry restoration

Common examples: ferromagnetism, superconductivity, crystals, ...

SSB at all T: Why not?

Spontaneous symmetry breaking usually only occurs at sufficiently low temperatures

But: symmetry can be broken when temperature is increased, e.g. "Pomeranchuk effect" in 3He

For $T \lesssim 0.3 \, \mathrm{K}$: $S_{\mathrm{liquid}} < S_{\mathrm{solid}}$ due to disordered nucleon spins

- → Additional degree of freedom can lead to "inverted" transition
- → Can this also persist up to highest temperatures?

Can a symmetry be broken at all temperatures?

On a lattice:

density matrix
$$\rho \sim e^{-\beta H} \stackrel{\text{high } T}{\longrightarrow} 1$$

→ all sites disentangle and system is disordered

Kliesch et al., *Phys. Rev. X* 4.3: 031019 *(2014)*

As a **QFT:** evidence for the existence of such theories, but only for

- (a) non-unitary theories (i.e. in $d=4-\epsilon$, non-zero chemical potential, ...)
- (b) unitary but non-local theories in d=2+1
- (c) UV incomplete theories
- (d) infinitely many fields

- S. Weinberg, *Phys. Rev. D 9 3357 (1974)*
- S.-I. Hong et al., *Phys. Rev. D 63, 085014 (2001)*
- N. Chai et al., Phys. Rev. Lett. 125, 131603 (2020)
- N. Chai et al., Phys. Rev. D 102, 065014 (2020)
- Chaudhuri et al., *JHEP 2021.8: 1-38 (2021)*
- B. Bajc et al., *Phys. Rev. D* 103, 096014 (2021)

In low dimensions: Coleman-Hohenberg-Mermin-Wagner theorem

→ forbids SSB of continuous symmetries at finite temperature

Towards a theory with persistent SSB

If theory has non-trivial fixed-point at zero temperature: UV completion at fixed-point

ightharpoonup at T>0, the time domain compactifies ightharpoonup CFT at finite temperature

A CFT at finite temperature is a CFT on $\mathbb{R}^{d-1} imes S^1_{eta}$

- One-point functions now enter CFT data, e.g. for scalar operator \mathcal{O} , $\langle\mathcal{O}\rangle_{\beta}=rac{b_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}}$
- If $b_{\mathcal{O}} \neq 0$, the vev is non-vanishing at all temperatures

L. Iliesiu et al., *JHEP* 2018.10: 1-71 (2018)

Main question: does a non-trivial unitary and local CFT at finite T exist, that features SSB?

Conjecture: $O(N) \times \mathbb{Z}_2$ symmetric models in d=2+1 at biconical fixed-point

Towards a theory with persistent SSB

 $\mathrm{O}(N) imes \mathbb{Z}_2$ symmetric theory with $\mathrm{O}(N)$ vector ϕ and Ising field χ

$$S[\phi, \chi] = \int d^d x \left[\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + \frac{1}{2} m_\phi^2 \phi^2 + \frac{1}{2} m_\chi^2 \chi^2 + \frac{\lambda_\phi}{8} (\phi^2)^2 + \frac{\lambda_\chi}{8} \chi^4 + \frac{\lambda_{\phi\chi}}{4} \phi^2 \chi^2 \right]$$

Evidence for persistent SSB of $\mathrm{O}(N) \times \mathbb{Z}_2 \to \mathrm{O}(N)$ collected

- in $d=4-\epsilon$, i.e. unitarity is violated for $\epsilon>0$
- in d=2+1 for the non-local (or long-range) model or infinite N

N. Chai et al., *Phys. Rev. Lett.* 125, 131603 (2020) N. Chai et al., *Phys. Rev. D* 102, 065014 (2020) Chaudhuri et al., *JHEP* 2021.8: 1-38 (2021)

Here, we show by using functional RG in d=2+1, that

- Mermin-Wagner theorem is fulfilled wherever applicable
- the theory has a UV completion at the biconical fixed-point
- SSB of \mathbb{Z}_2 persist to all temperatures if N is sufficiently large

LPA of O(N) model

Extended Local Potential Approximation (LPA'):

$$\Gamma_k[\phi] = \int d^d x \left(\frac{Z_k}{2} (\partial \phi)^2 + U_k[\phi] \right)$$

Continuation to finite temperature

$$q_0 \to i\omega_n, \quad \int \frac{d^D q}{(2\pi)^D} \to T \sum_{n \in \mathbb{Z}} \int \frac{d^d q}{(2\pi)^d}$$

Flow of dimensionless effective potential $u=k^{-d}U_k$ as a function of $\rho=\phi^2/2$ and $\tau=2\pi T/k$

$$\partial_t u = -du + (d-2)\rho u' + \frac{4v_d}{d}s_0^d(\tau) \frac{1}{1 + u' + 2\rho u''} + \frac{4v_d}{d}s_0^d(\tau) \frac{N-1}{1 + u'}$$

LPA of O(N) model

Extended Local Potential Approximation (LPA'):

$$\Gamma_k[\phi] = \int d^d x \left(\frac{Z_k}{2} (\partial \phi)^2 + U_k[\phi] \right)$$

Assume $\kappa > 0$ at small scales $k < 2\pi T$

$$k\partial_k \kappa = \frac{4v_{d-1}}{d-1}T(N-1)k^{d-3} + \mathcal{O}(k^{d+1})$$

$$d = 1 + 1: \quad \partial_k \kappa \sim T(N - 1)/k$$

$$d = 2 + 1: \quad \partial_k \kappa \sim T(N - 1)/k^2$$

 $\kappa = v^2/2$

→ not possible to maintain $\lim_{k\to 0}\kappa>0$ if $d\le 3$ and N>1

LPA of O(N) model

Extended Local Potential Approximation (LPA'):

$$\Gamma_k[\phi] = \int d^d x \left(\frac{Z_k}{2} (\partial \phi)^2 + U_k[\phi] \right)$$

Assume $m^2 > 0$ at some RG scale k > 0

$$k\partial_k m^2 = -\frac{4v_d}{d} s_0^d(\tau) (N+2) \frac{\lambda}{(k^2+m^2)^2} < 0$$

Restored symmetry can not be broken again

How can we drive high temperature SSB?

Couple fermions?

$$k\partial_k m^2 = -\frac{4v_d}{d}s_0^d(\tau)(N+2)\frac{\lambda}{(k^2+m^2)^2} + \frac{4v_d}{d}s_0^{F,d}(\tau)h^2$$

→ at high temperatures, fermions decouple

→ recall talk by Mireia:

How can we drive high temperature SSB?

What about bosons?

Action of $O(N) \times \mathbb{Z}_2$ theory at UV scale

$$S[\phi, \chi] = \int d^d x \left[\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + \frac{1}{2} m_\phi^2 \phi^2 + \frac{1}{2} m_\chi^2 \chi^2 + \frac{\lambda_\phi}{8} (\phi^2)^2 + \frac{\lambda_\chi}{8} \chi^4 + \frac{\lambda_{\phi\chi}}{4} \phi^2 \chi^2 \right]$$

Scalar potential **bounded** from below if $\lambda_{\phi}\lambda_{\chi} \geq \lambda_{\phi\chi}^2 + \lambda_{\phi\chi} < 0$ possible!

LPA' flow equations

$$\begin{split} \partial_t u &= -Du + (D-2+\eta_\phi)\bar{\rho}_\phi u^{(1,0)} + (D-2+\eta_\chi)\bar{\rho}_\chi u^{(0,1)} & \text{canonical scaling} \\ &+ I_R^D(\omega_\chi,\omega_\phi,\omega_{\phi\chi})S_\phi(\tau) + (N-1)I_G^D(u^{(1,0)})S_\phi(\tau) & \text{O}(N) \text{ sector} \\ &+ I_R^D(\omega_\phi,\omega_\chi,\omega_{\phi\chi})S_\chi(\tau) & \mathbb{Z}_2 \text{ sector} \end{split}$$

with 'masses'
$$\omega_\phi = u_k^{(1,0)} + 2\bar{\rho}_\phi u_k^{(2,0)}$$
, $\omega_\chi = u_k^{(0,1)} + 2\bar{\rho}_\chi u_k^{(0,2)}$ and $\omega_{\phi\chi}^2 = 4\bar{\rho}_\phi\bar{\rho}_\chi(u_k^{(1,1)})^2$

How can we drive high temperature SSB?

What about bosons?

Action of $O(N) \times \mathbb{Z}_2$ theory at UV scale

$$S[\phi, \chi] = \int d^d x \left[\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + \frac{1}{2} m_\phi^2 \phi^2 + \frac{1}{2} m_\chi^2 \chi^2 + \frac{\lambda_\phi}{8} (\phi^2)^2 + \frac{\lambda_\chi}{8} \chi^4 + \frac{\lambda_{\phi\chi}}{4} \phi^2 \chi^2 \right]$$

Scalar potential **bounded** from below if $\lambda_{\phi}\lambda_{\chi} \geq \lambda_{\phi\chi}^2 + \lambda_{\phi\chi} < 0$ possible!

In d=2+1, O(N) symmetry is always restored at a finite scale for N>1.

Assume \mathbb{Z}_2 is **preserved** at that scale

$$k\partial_k m_{\chi}^2 = \frac{4v_3}{3} k^5 s_0^3(\tau) \left(-\frac{3\lambda_{\chi}}{(k^2 + m_{\chi}^2)^2} - \frac{N\lambda_{\phi\chi}}{(k^2 + m_{\phi}^2)^2} \right) \quad \blacktriangleright$$

 \dots and SSB of \mathbb{Z}_2 not excluded by Mermin-Wagner!

$$k\partial_k m_\chi^2 < 0$$
 for $\lambda_{\phi\chi} < 0$ and sufficiently large $N!$

Quantum critical point

 $\mathrm{O}(N) imes \mathrm{O}(M)$ theories feature several interacting fixed-points in d=2+1

- decoupled Wilson-Fisher fixed point (DFP): $\lambda_{\phi}^*, \lambda_{\chi}^* > 0, \lambda_{\phi\chi}^* = 0$
- isotropic fixed point (IFP): $\lambda_\phi^* = \lambda_\chi^* = \lambda_\phi^* > 0$
- biconical fixed point (BFP): $\lambda_\phi^*, \lambda_\chi^* > 0, \lambda_{\phi\chi}^* \neq 0$
- lacktriangle BFP has three relevant directions for $N\geq 3$ and is hence unstable
 - ...but it features $\lambda_{\phi\chi}^* < 0$!

N = 10	$ar{\kappa}_{\phi}$	$ar{\kappa}_{\chi}$	$ar{\lambda}_{\phi}$	$ar{\lambda}_{\chi}$	$ar{\lambda}_{\phi\chi}$	θ_1	$ heta_2$	θ_3
LPA6	0.25	0.10	2.62	2.54	-2.34	2.02	1.06	0.61
LPA8	0.24	0.09	2.59	2.84	-2.43	1.98	1.07	0.61
LPA'6	0.24	0.10	2.50	2.61	-2.30	1.99	1.09	0.56
LPA'8	0.24	0.09	2.47	2.81	-2.34	1.95	1.09	0.57

N=2	ν	η_ϕ	η_χ
5-loop	0.70(3)	0.037(5)	0.037(5)
FRG, LPA'6	0.68	0.040	0.040

Calabrese et al., *Physical Review B* 67 (5), 054505 (2003)

Calabrese et al., *Physical Review B 67 (5), 054505 (2003)* Eichhorn et al., *Phys. Rev. E 88, 042141 (2013)*

Phase diagram

At T=0: biconical fixed point as quantum critical point with SSB in the UV

lacktriangle relevant coupling to tune in the UV is $\bar{\kappa}_\chi$

Phase diagram

At T=0: biconical fixed point as quantum critical point with SSB in the UV

lacktriangle relevant coupling to tune in the UV is $ar{\kappa}_\chi$

Summary

High temperatures —— Entropy is maximized in thermal equilibrium

System is expected to be in a disordered state

In nature: Systems contradicting this expectation, e.g., Pomeranchuk effect or Rochelle salt

We showed, that biconical $\mathrm{O}(N) \times \mathbb{Z}_2$ models in d=2+1

- ... posses a UV completion at the biconical fixed-point
- ... spontaneously break \mathbb{Z}_2 symmetry at all temperatures for $N \geq N_c = 15$ above BFP

→ <u>arXiv:2409.10606</u>

Very recent (last Friday) follow-up:

Komargodski and Popov: shown for large but finite ${\cal N}$

Outlook

In d=2+1: long-range order forbidden in $\mathrm{O}(N)$ at T>0 for N>1

lacktriangle bare vev is always vanishing $\langle \phi_a \rangle_\beta = 0$

But: "renormalized" vev can still be finite if $Z_k o \infty$ in the IR

- → Berezenskii-Kosterlitz-Thouless phase and quasi long-range order
- → line of fixed-points and infinite corr. length
- can we have a BKT phase at all temperatures?

To what extend is this included in the $\mathrm{O}(2)$ model?!

If it is... \rightarrow similar spirit as before in $O(N) \times O(2)$

