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Introduction

Symmetries are restored at 
high temperatures/early times

T

TRH

T < Tc
Spontaneous breaking while the 
Universe expands and cools down

ϕ

ϕ
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Introduction

   Cosmological phase transitions ⇒

Key to address       
open questions:

baryogenesis

Aftermath directly 
observable in GWs

Evidence for new 
fundamental physics
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Fig. from Schmitz 
[2002.04615] JHEP

Pulsar timing arrays

 NANOGrav

 PPTA

 EPTA

◦ IPTA

◦ SKA

Space-based interferometers

◦ DECIGO

◦ BBO

◦ LISA

Ground-based interferometers

 aLIGO + aVirgo (observing run 2)

◦ aLIGO (design)

◦ aLIGO + aVirgo (design)

◦ aLIGO + aVirgo + KAGRA (design)

◦ Cosmic Explorer

◦ Einstein Telescope
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Figure 1. Top: Strain noise spectra. Bottom: PLISCs and GW signal for BP #14. See text.
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Nucleation theory Coleman 1977 (PRD) 
Callan, Coleman 1977 (PRD) 
Linde 1983 (NPB)

ϕ

V(ϕ)

T ≫ Tc

T < Tc

T > Tc

Tunneling 
trajectory

False 
vacuum

• Assume thermal fluctuations in 
homogeneous spacetime:





• Tunneling rate per unit volume 
given by O(3) action 


ϕ(x, τ) = ϕ(r), r = |x |

S3/T

γV ∼ T 4 exp(−S3/T)
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Nucleation theory Coleman 1977 (PRD) 
Callan, Coleman 1977 (PRD) 
Linde 1983 (NPB)

ϕ ≠ 0

ϕ = 0
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• False vacuum is homogeneous field configuration


• Critical bubble is a sphere


• Nucleation probability is the same everywhere



What about impurities?

Figure: Bubble chamber
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“If monopole (or vortex) solutions exist for a metastable or 
false vacuum, a finite density of monopoles (or vortices) can 
act as impurity sites that trigger inhomogeneous nucleation 
and decay of the false vacuum.”

“Now one has to ask the following question: Is the early 
universe really sufficiently pure in order for supercooling 
to take place? The aim of this paper is to show that in 
most cases the early universe is very pure. […] In this paper 
we consider ordinary particles as impurities.”

“In particle physics it is often assumed that phase 
transitions are nucleated by thermal fluctuations. In 
practice, […] except in very pure, homogeneous samples, 
phase transitions are often nucleated by various forms of 
impurities and inhomogeneities of nonthermal origin.”

“What if the transition was nucleated by impurities? In 
this case the mean spacing between bubbles has 
nothing to do with free energies of nucleation and is 
simply the spacing between the relevant impurities. ”



• Compact objects and gravitational effects  • Primordial density fluctuations

Fig. from Jinno, Konstandin, Rubira, 
van de Vis, [2108.11947], JCAP

Fig. from Oshita, Yamada, 
Yamaguchi [1808.01382], PLB

The nature of impurities
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Figure 1: Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an

O(2) symmetry are nucleated on the domain walls, while spherical bubbles with O(3)

symmetry are nucleated in the homogeneous spacetime far from the domain walls.

formation of Higgs bubbles nucleated on the domain wall plane. These bubbles are not

spherically symmetric due to the presence of the wall, but are elliptical with a reduced O(2)

symmetry, see figure 1 for a cartoon of the seeded and homogeneous bubbles. Ref. [61]

showed that the seeded transition is generically faster than the homogeneous one, and that

regions of parameter space which are naively ruled out (because the homogeneous one is

suppressed) can become viable due to the presence of domain walls acting as catalyzing

seeds.

The analysis in ref. [61] was carried out in the high–temperature limit. In addition,

the seeded tunnelling probability was evaluated either in the thin wall limit, or within the

lower dimensional theory on the domain wall after integrating out the Kaluza–Klein states

along the orthogonal direction. While these methods provide a new qualitative picture

of the seeded tunnelling, in certain temperature ranges neither of these approximations

can be applied, leaving a gap in calculability. This prevents an accurate determination of

thermodynamical quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide

a state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal

potential. The use of the mountain pass algorithm, first presented in ref. [60] for the case

of monopole catalysed tunnelling, allows us to numerically solve the equations of motion in

the presence of a domain wall background without resorting to an approximation scheme

such as the high temperature expansion or the thin wall limit 3. With these results we can

determine the regions of parameter space where the catalysed phase transition nucleates

while the homogeneous transition is too slow to complete. Even for parameters where the

homogeneous transition is cosmologically fast, we confirm that the catalysed transition is

the dominant process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition

is its duration or time scale, usually indicated by the dimensionless quantity �/H, with

3
See appendix A for a comparison with the previous results of ref. [61].
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Fig. from Agrawal, SB, Mariotti, Nee [2312.06749] JHEP

• Topological defects 

The nature of impurities

Domain walls

Fig. from SB, Mariotti, [2405.08060] SciPost
Figure 1: Three–dimensional representation of a critical bubble of broken electroweak

symmetry seeded by the QCD axion string. The string is shown in red, and it is taken to

be straight and aligned with the vertical z direction. The Higgs bubble in green is nucleated

around the string with a non–spherical shape, corresponding to the surface where the Higgs

field is h(r, z) ⇠ 25GeV for illustration purposes. Detailed information is given in Sec. 5.3.

Let us also mention that, as one expects a large hierarchy between the EW scale and

the PQ scale, our analysis will be based on an e↵ective field theory (EFT) for the Higgs field

where the heavy degrees of freedom (including the basic axion string) are integrated out 3.

Our EFT matches the known results for the SM + axion (or ALP) EFT, see e.g. [74–76],

but additionally allows to take into account the presence of the axion string in a simple way.

We will also comment on how the relevance of the di↵erent higher–dimensional operators in

the ALP EFT is modified in the string background. We believe that our approach provides

an e�cient framework to study the dynamics of EW–scale states coupled to strings of large

tension, which can be applied to many extensions of the SM.

This paper is organized as follows. In Sec. 2 we introduce our Lagrangian and comment

on the di↵erent realizations depending on whether the EW phase transition is first order

or not. We also present a brief overview of the possible QCD axion string solutions allowed

by the model. In Sec. 3 we derive the EFT for the Higgs field in the string background,

and carry out the relevant computations that are needed to study the thermal history of

the Higgs sector. This is discussed in detail in Sec. 4 for the minimal SM + PQ scenario,

and in Sec. 5 for a model with a first order EW phase transition. We conclude in Sec. 6.

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

3
See [72, 73] for a similar approach in the context of branes and strings with fluxes.
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Defect Dimension Homotopy Mass

Domain walls 2

Strings 1

π0(ℳ)

π1(ℳ)

σL2

μL

Fig. from Ringeval 2010

U(1) → nothing

ℤ2 → nothing

Topological classification
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𝑉 = −
1
2

(𝜇2 − 𝑐h𝑇2)h2 +
1
4

𝜆 h4

−
1
2

(𝑚2 − 𝑐𝑠𝑇2)𝑆2 +
1
4

𝜂 𝑆4

+
1
2

𝜅 h2𝑆2

• SM + scalar singlet with ℤ2 : S → − S

EWPT with a singlet
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See e.g. Espinosa, Gripaios, Konstandin, Riva [1110.2876] JCAP

*  breaking terms destabilize the wall 
network and are set to zero in the following
ℤ2
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• Competition between homogenous and 
seeded nucleation for 2nd step

EWPT with a singlet

Figure 1: Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an

O(2) symmetry are nucleated on the domain walls, while spherical bubbles with O(3)

symmetry are nucleated in the homogeneous spacetime far from the domain walls.

formation of Higgs bubbles nucleated on the domain wall plane. These bubbles are not

spherically symmetric due to the presence of the wall, but are elliptical with a reduced O(2)

symmetry, see figure 1 for a cartoon of the seeded and homogeneous bubbles. Ref. [61]

showed that the seeded transition is generically faster than the homogeneous one, and that

regions of parameter space which are naively ruled out (because the homogeneous one is

suppressed) can become viable due to the presence of domain walls acting as catalyzing

seeds.

The analysis in ref. [61] was carried out in the high–temperature limit. In addition,

the seeded tunnelling probability was evaluated either in the thin wall limit, or within the

lower dimensional theory on the domain wall after integrating out the Kaluza–Klein states

along the orthogonal direction. While these methods provide a new qualitative picture

of the seeded tunnelling, in certain temperature ranges neither of these approximations

can be applied, leaving a gap in calculability. This prevents an accurate determination of

thermodynamical quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide

a state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal

potential. The use of the mountain pass algorithm, first presented in ref. [60] for the case

of monopole catalysed tunnelling, allows us to numerically solve the equations of motion in

the presence of a domain wall background without resorting to an approximation scheme

such as the high temperature expansion or the thin wall limit 3. With these results we can

determine the regions of parameter space where the catalysed phase transition nucleates

while the homogeneous transition is too slow to complete. Even for parameters where the

homogeneous transition is cosmologically fast, we confirm that the catalysed transition is

the dominant process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition

is its duration or time scale, usually indicated by the dimensionless quantity �/H, with

3
See appendix A for a comparison with the previous results of ref. [61].
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TDW Tc Tn
time

  (0,0) → (0, ± vs)   (0, ± vs) → (v,0)

 At  bubbles may nucleate on the walls T seed
n



Lazarides, Shafi, Kibble 1982, PRD
Perkins, Vilenkin 1992, PRD

• Define nucleation rate per unit surface

• Stricter nucleation condition (only on 

sub manifold)

• Competition between homogenous and 
seeded nucleation for 2nd step

EWPT with a singlet

Figure 1: Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an

O(2) symmetry are nucleated on the domain walls, while spherical bubbles with O(3)

symmetry are nucleated in the homogeneous spacetime far from the domain walls.

formation of Higgs bubbles nucleated on the domain wall plane. These bubbles are not

spherically symmetric due to the presence of the wall, but are elliptical with a reduced O(2)

symmetry, see figure 1 for a cartoon of the seeded and homogeneous bubbles. Ref. [61]

showed that the seeded transition is generically faster than the homogeneous one, and that

regions of parameter space which are naively ruled out (because the homogeneous one is

suppressed) can become viable due to the presence of domain walls acting as catalyzing

seeds.

The analysis in ref. [61] was carried out in the high–temperature limit. In addition,

the seeded tunnelling probability was evaluated either in the thin wall limit, or within the

lower dimensional theory on the domain wall after integrating out the Kaluza–Klein states

along the orthogonal direction. While these methods provide a new qualitative picture

of the seeded tunnelling, in certain temperature ranges neither of these approximations

can be applied, leaving a gap in calculability. This prevents an accurate determination of

thermodynamical quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide

a state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal

potential. The use of the mountain pass algorithm, first presented in ref. [60] for the case

of monopole catalysed tunnelling, allows us to numerically solve the equations of motion in

the presence of a domain wall background without resorting to an approximation scheme

such as the high temperature expansion or the thin wall limit 3. With these results we can

determine the regions of parameter space where the catalysed phase transition nucleates

while the homogeneous transition is too slow to complete. Even for parameters where the

homogeneous transition is cosmologically fast, we confirm that the catalysed transition is

the dominant process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition

is its duration or time scale, usually indicated by the dimensionless quantity �/H, with

3
See appendix A for a comparison with the previous results of ref. [61].
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1. Solving coupled system of PDEs 2. Thin wall approximation 3. Kaluza-Klein decomposition 

• “Exact” 

• Physical picture?  

• Which initial conditions for 
the algorithm? 

• Limited validity 

• Intuitive picture 

• Simple calculation 

• Quantitative results 

• Still intuitive 

• Initial conditions for num. 
algorithms and cross-checks

Only O(2) symmetry

Figure 1: Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an

O(2) symmetry are nucleated on the domain walls, while spherical bubbles with O(3)

symmetry are nucleated in the homogeneous spacetime far from the domain walls.

formation of Higgs bubbles nucleated on the domain wall plane. These bubbles are not

spherically symmetric due to the presence of the wall, but are elliptical with a reduced O(2)

symmetry, see figure 1 for a cartoon of the seeded and homogeneous bubbles. Ref. [61]

showed that the seeded transition is generically faster than the homogeneous one, and that

regions of parameter space which are naively ruled out (because the homogeneous one is

suppressed) can become viable due to the presence of domain walls acting as catalyzing

seeds.

The analysis in ref. [61] was carried out in the high–temperature limit. In addition,

the seeded tunnelling probability was evaluated either in the thin wall limit, or within the

lower dimensional theory on the domain wall after integrating out the Kaluza–Klein states

along the orthogonal direction. While these methods provide a new qualitative picture

of the seeded tunnelling, in certain temperature ranges neither of these approximations

can be applied, leaving a gap in calculability. This prevents an accurate determination of

thermodynamical quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide

a state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal

potential. The use of the mountain pass algorithm, first presented in ref. [60] for the case

of monopole catalysed tunnelling, allows us to numerically solve the equations of motion in

the presence of a domain wall background without resorting to an approximation scheme

such as the high temperature expansion or the thin wall limit 3. With these results we can

determine the regions of parameter space where the catalysed phase transition nucleates

while the homogeneous transition is too slow to complete. Even for parameters where the

homogeneous transition is cosmologically fast, we confirm that the catalysed transition is

the dominant process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition

is its duration or time scale, usually indicated by the dimensionless quantity �/H, with

3
See appendix A for a comparison with the previous results of ref. [61].
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System of PDEs

∂2ϕ
∂r2

+
1
r

∂ϕ
∂r

+
∂2ϕ
∂z2

=
∂V
∂ϕ

, ϕ = h, S

h(∞, z) = h(ρ, ± ∞) = 0

S(∞, z) = SDW (z), S(r, ± ∞) = ± vs,

False vacuum is non-trivial as it contains a 
domain wall (which depends on )z

+vs

−vs

r

z
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Thin wall approximation

E(R) = −
4π
3

ϵ R3 + 4π (σB −
1
4

σDW) R2

Gain by eating up domain wall surface
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+vs

−vs

r

z



Kaluza-Klein decomposition

𝑆 = 𝑆DW(𝑧) + ∑
𝑘

𝑠𝑘(𝑥𝜇)𝜎𝑘(𝑧)

h = ∑
𝑘

h𝑘(𝑥𝜇)𝜙𝑘(𝑧)

𝑥𝜇 = 𝑡, 𝑥, 𝑦

• Expand the fields around the domain wall background:

Simone Blasi - Asymptotic & Friends

σk(z), ϕk(z)

sk(x), hk(x)

z



σk(z), ϕk(z)

sk(x), hk(x)

z

Kaluza-Klein decomposition

• Eigenspectrum of excitations on the wall:
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Kaluza-Klein decomposition

• Seeded tunneling as homogenous nucleation in lower dimension

Simone Blasi - Asymptotic & Friends

h0𝑠0

𝑉 eff
3d (h0, 𝑠0)



Kaluza-Klein decomposition

• Seeded tunneling as homogenous nucleation in lower dimension

Simone Blasi - Asymptotic & Friends

h0𝑠0

𝑉 eff
3d (h0, 𝑠0)

h

S

𝑧

Real time bubble 
expansion 



Comparison
Simone Blasi - Asymptotic & Friends

� � � � �
��
�

�

�

��

Figure 8: Comparison of the homogeneous bounce action S3/T (red) in the leading high–

temperature approximation, and the seeded bounce action evaluated with the MPT (red

diamonds) and within the EFT within di↵erent approximations: zeroth order where KK

states are neglected in green, O(1/m2
KK) in orange and O(1/m4

KK) in blue. The purple line

shows the seeded bounce action within the thin wall approximation.

grant numbers 12B2323N. This work is supported by the Deutsche Forschungsgemeinschaft

under Germany’s Excellence Strategy - EXC 2121 Quantum Universe - 390833306.

A Comparison to previous work

In this appendix, we provide a comparison between the results obtained within the domain

wall e↵ective field theory (EFT) and the MPT algorithm by retaining only the leading

terms in the high–temperature approximation. This provides a non trivial cross check

of our methods and corroborates our strategy in view of generalising these results to full

1-loop thermal potentials.

In figure 8 we compare the tunneling action evaluated with the domain wall EFT

(described in further detail in ref [61]) and the MPT algorithm, for the benchmark point

given by  = 1.3, ⌘ = 1.6 and µs ' 127 GeV leading to a singlet mass in the true vacuum

mS = 250GeV at zero temperature. For this benchmark the critical temperature is Tc '
110 GeV. At Tr ' 74 GeV the tunnelling action approaches zero, signaling a classical

instability of the domain walls.

The temperature range where the EFT is supposed to provide reliable results for the

bounce action can be estimated by considering the ratio between the lightest Higgs zero

mode mass, !2
0(T ) (see equation (3.10)), and the mass scale of the continuum KK states,

m2
KK(T ). When this ratio is small, integrating out the KK states is indeed justified and the

expansion in terms of the inverse KK mass is supposed to be converging. In practice, it is

more convenient to identify the range of validity by comparing the prediction for the bounce

– 25 –
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2.

3.



Figure 2: Parameter space for the electroweak phase transition in the xSM with Z2

symmetry. The region between the solid gray lines indicates where a two–step phase

transition takes place. In the upper left corner the electroweak phase transition is second

order, while the lower right corner is unable to reproduce the correct electroweak vacuum

at zero temperature. Above the red solid line the homogeneous transition is cosmologically

fast, but the catalyzed transition nucleates at higher temperatures. Between the red and

blue solid lines only the seeded transition can lead to successful nucleation, while below

the blue line the universe remains trapped in the false vacuum. Dotted lines have the same

meaning of the solid lines but are obtained within the high–temperature approximation

instead of the full one–loop thermal potential.

di↵erent vacua ±vs related by the Z2. In the high temperature limit, a planar domain wall

solution can be obtained exactly considering the potential in Eq. (2.9):

SDW(z) = vS(T ) tanh

 
⌘1/2vS(T )zp

2

!
, vS(T ) =

s
µ2
s � csT 2

⌘
, (2.12)

where z is the coordinate orthogonal to the wall.

Away from the high–T limit, the domain wall shape needs to be determined numerically

as the solution to

S00(z) =
@

@S
Ve↵(0, S(z); T ), S(±1) = ±vs(T ), (2.13)

where the e↵ective potential is given in Eq.(2.8) and we have taken h = 0 according to the

false vacuum configuration (h, S) = (0, vs(T )).

The solution to (2.13) can be e�ciently obtained by using the following first integral:

I = �1

2
S0(z)2 + Ve↵(0, S; T ) = Ve↵(0, vs; T ) (2.14)

which fixes the slope of the domain wall profile at the center, z = 0, as

S0(0) =
p

2(Ve↵(0, 0; T ) � Ve↵(0, vs; T )), (2.15)

– 7 –

• Seeded transition is faster in all the 
two-step parameter space

• New parameter space becomes 
viable thanks to seeded tunneling

EWPT with a singlet
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• Domain wall network mimicked by Ising model • Spectrum shifted to IR with enhanced amplitude 

Seeded

Figure 4: Final spectra of the gravitational waves with (left) and without (right)
the domain wall network. The strength of the phase transition is ↵ = 0.05, and the
velocities of the bubble walls are (from top to bottom) vw = 0.4, 0.55 and 0.8.

11

(ξH)−1

Seeded: 

+


possible differences in 
spectral shape?

β → 1/ξH*

Homogeneous

R

Simone Blasi - Asymptotic & Friends

EWPT with a singlet



EWPT with a singlet
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• Numerical simulation (Langevin equation)

h S

SB, Ekstedt, in prep.



What about other defects?
SB, Mariotti [2405.08060] SciPost
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QCD axion strings 
α(θ) : 0 → 2π

δ ≈ m−1
ρ

• Strings form at PQ phase transition

• String—wall network collapses

• Strings connected by axion 
domain walls

T

fa

QCD
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QCD axion strings 
α(θ) : 0 → 2π

δ ≈ m−1
ρ

• Strings form at PQ phase transition

• String—wall network collapses

• Strings connected by axion 
domain walls

???

T

fa

QCD
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QCD axion strings
• Global string solution

m−1
ρ

r

ρ(r)
fa

∝ [1 − (mρr)−2]

α(θ) : 0 → 2π

VPQ(Φ)

• Potential for PQ field

Φ = ρeiα

δ ≈ m−1
ρ

Simone Blasi - Asymptotic & Friends



QCD axion strings

• Consider the minimal KSVZ axion model with a Higgs portal:

cylindrical bubbles of true vacuum expanding radially from the string core, or the nucleation

of elongated bubbles nucleated along the string. This can drastically change the expected

gravitational wave signal (for instance due to the shape of the bubbles) as well as possible

predictions for baryogenesis (due to di↵erent regimes for the wall velocity).

Our results have been conveniently obtained within an e↵ective–field–theory approach

taking advantage of the hierarchy between the electroweak and the PQ scale, in which

the axion string is integrated out at tree level together with the heavy states of the PQ

sector. This allows us to obtain analytical results for the stability of the axion string,

as well as to provide a simpler picture of seeded nucleation around heavy defects. This

framework can be straightforwardly generalized to a richer electroweak scalar sector beyond

the simple deformation of the SM potential considered here, thus paving the way to new

phenomenological applications and interesting revisitations of (extensions of) the SM when

considered in combination with the axion solution to the strong CP problem.

Let us finally mention that while we have restricted our study to KSVZ–like models

where the Higgs is neutral under the PQ symmetry, we expect similar implications for

the electroweak phase transition also in DFSZ–like models where the Higgs doublets have

additional couplings with the string due to the non–zero PQ charge.
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Figure 3. (Top panels) 2D projection of the radial mode energy ṡ
2 at the end of our 3D simulation investigating radial mode

emission around log(ms/H) ⇠ 6.5. The full simulation box, spanning ⇠1.5 Hubble lengths, is shown on the right with a detailed
view shown on the left. Axion strings stand out as bright closed loops with strong emissions in particular around kinks and
recent string re-connections. (Bottom panels) The same state of the string network but illustrated for the axion energy density
ȧ
2 instead of that of the radial mode. The axion emission has more support at long wavelengths relative to that of the radial

mode.

the radial mode mass itself (see also App. E). In contrast,
the lower panel shows the axion time derivative squared
(ȧ2) for the same state as in the left panel. The axion
radiation has support at longer wavelengths relative to
radial mode radiation. Thus while the high-curvature
region also produces significant axion radiation, the con-
trast versus the rest of the string regions is not as large.

To compute the energy densities more precisely we use
the fact that away from the string cores both the axions
and radial modes are free fields. At a given point x the
energy density of a real, free scalar field X, which solves

its classical equations of motion, is

⇢X(x) =
1

2
Ẋ

2 +
1

2
(rX)2 +

1

2
m

2

X
X

2

= Ẋ
2
,

(12)

where mX is the field’s mass and where we have applied
the equation of motion to arrive at the second line. This
implies that we can compute the average energy density
over the simulation box, ⇢X ⌘

1

L3

R
d
3
x⇢(x), by

⇢X =
1

L3

Z
d
3
xẊ

2(x) =
1

L3

Z
d
3
k

(2⇡)3
|
˜̇
X(k)|2 . (13)

Figure 4: Kinetic energy v2 in di↵erent simulation snapshots: t = 2.7/� (top left), 5.4/�

(top right), 10.8/� (bottom left) and 20.1/� (bottom right). We use box size L = 40vw/�,

weak transitions and vw = 0.8.

while grid spacing and various sources of viscosity will lead to exponential damping in the

UV. A detailed discussion of this e↵ect will be provided below. Accordingly, di↵erent box

sizes will facilitate the best measurements for the various physical observables. Also notice

that the power spectrum is generally reduced by finite size e↵ects in the IR and UV. The loss

of power in the UV corresponds to a reduction in the average kinetic energy which we study

in App. D. Extrapolating to very large grid size, we estimate that this leads to a reduction

of the momentum-integrated GW signal by about 20%.

– 14 –
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long as the trilinear coupling is negative V
(3)
EW(0) < 0. In addition, one needs !2 ⌧ m
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in order to be able to neglect the higher excitations.

With the e↵ective potential at hand, one may evaluate the high–temperature seeded

tunneling by referring to the action of the bounce h0(r) solving
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Due to the friction term this bounce can only be obtained numerically.

Let us now estimate the range of portal couplings that can sensibly a↵ect the homoge-

neous tunneling. On the lower end of this range, the thin wall approximation is valid and

seeded tunneling becomes e↵ective when

��DW ⇠ 10% · 4� ) 

⌘
⇠ 10% · mh(A)

m⇢(A)
. (A.23)

The upper end is given by the onset of rolling, namely the portal coupling for which !
2 = 0,



⌘
' mh(B)

m⇢(B)
. (A.24)

As we can see, seeded tunneling is e↵ective in a small range around /⌘ ⇠ mh/m⇢.

B The action for the thin wall
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Let us now split the action in three di↵erent pieces:
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where ⇢h(⇠) is the ⇢ trajectory of the homogenous tunneling.

If we now make the following expansion,

⇢ = ⇢B(r) + �⇢, h = hh(⇠) + �h, (B.7)
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where ⇢h(⇠) is the ⇢ trajectory of the homogenous tunneling.

If we now make the following expansion,

⇢ = ⇢B(r) + �⇢, h = hh(⇠) + �h, (B.7)
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long as the trilinear coupling is negative V
(3)
EW(0) < 0. In addition, one needs !2 ⌧ m

2
h(B)

in order to be able to neglect the higher excitations.

With the e↵ective potential at hand, one may evaluate the high–temperature seeded

tunneling by referring to the action of the bounce h0(r) solving

�h
00
0(r)�

h
0
0(r)

r
+

@V (h0)

@h0
= 0, h

0
0(0) = 0, h0(1) = 0. (A.22)

Due to the friction term this bounce can only be obtained numerically.

Let us now estimate the range of portal couplings that can sensibly a↵ect the homoge-

neous tunneling. On the lower end of this range, the thin wall approximation is valid and

seeded tunneling becomes e↵ective when

��DW ⇠ 10% · 4� ) 
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m⇢(A)
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The upper end is given by the onset of rolling, namely the portal coupling for which !
2 = 0,
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As we can see, seeded tunneling is e↵ective in a small range around /⌘ ⇠ mh/m⇢.
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If we now make the following expansion,

⇢ = ⇢B(r) + �⇢, h = hh(⇠) + �h, (B.7)

– 27 –

long as the trilinear coupling is negative V
(3)
EW(0) < 0. In addition, one needs !2 ⌧ m

2
h(B)

in order to be able to neglect the higher excitations.

With the e↵ective potential at hand, one may evaluate the high–temperature seeded

tunneling by referring to the action of the bounce h0(r) solving

�h
00
0(r)�

h
0
0(r)

r
+

@V (h0)

@h0
= 0, h

0
0(0) = 0, h0(1) = 0. (A.22)

Due to the friction term this bounce can only be obtained numerically.

Let us now estimate the range of portal couplings that can sensibly a↵ect the homoge-

neous tunneling. On the lower end of this range, the thin wall approximation is valid and

seeded tunneling becomes e↵ective when

��DW ⇠ 10% · 4� ) 

⌘
⇠ 10% · mh(A)

m⇢(A)
. (A.23)

The upper end is given by the onset of rolling, namely the portal coupling for which !
2 = 0,



⌘
' mh(B)

m⇢(B)
. (A.24)

As we can see, seeded tunneling is e↵ective in a small range around /⌘ ⇠ mh/m⇢.

B The action for the thin wall

B = (0, f̃a) A = (v, fa) ⇢ h String A String B String C (B.1)

The full action for our model is given by

S =

Z
d✓dzrdr

⇢
1

2
⇢
2
,µ +

1

2
⇢
2
↵
2
,µ +

1

2
h
2
,r � V (⇢)� V (h)� 1

2
(⇢2 � f

2
a )(h

2 � v
2)

�
. (B.2)

Now using that ↵ = ✓, ⇢ = ⇢(r, z), h = h(r, z), we write the action as

S = �2⇡

Z
dzrdr

⇢
1

2
⇢
2
,z +

1

2
⇢
2
,r +

1

2

⇢
2

r2
+

1

2
h
2
,z +

1

2
h
2
,r + V (⇢) + V (h) +

1

2
(⇢2 � f

2
a )(h

2 � v
2)

�
.

(B.3)

Let us now split the action in three di↵erent pieces:

S1 = �2⇡

Z
dzrdr

⇢
1

2
⇢
2
,z +

1

2
⇢
2
,r +

1

2

⇢
2

r2
+ V (⇢)� 1

2
(⇢2 � f

2
a )v

2

�
, (B.4)

S2 = �2⇡

Z
dzrdr

⇢
1

2
h
2
,z +

1

2
h
2
,r + V (h) +

1

2
(⇢2h � f

2
a )h

2

�
(B.5)

S3 = �2⇡

Z
dzrdr

⇢
1

2
(⇢2 � ⇢

2
h)h

2

�
, (B.6)

where ⇢h(⇠) is the ⇢ trajectory of the homogenous tunneling.

If we now make the following expansion,

⇢ = ⇢B(r) + �⇢, h = hh(⇠) + �h, (B.7)
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• Consider first order EWPT with false vacuum B metastable at T = 0

time of the EW phase transition. It is hence an important to study of the presence of the

QCD axion strings can modify the EW phase transition, both in the case in which the EW

sector is the simple mexican-hat of the SM, and as well as new physics imply an EW sector

with a first order phase transition. Examples of the latter case include the Higgs-Singlet,

the Two Higgs doublet model, and many other BSM theories (see, e.g. [12–16]) .

A portal interaction between the PQ sector and the EW sector is certainly present in

the UV theory since it is not protected by any symmetry, implying an e↵ective coupling

between the Higgs field and the QCD strings. As we will show, depending on the size of

this coupling, the QCD axion strings can significantly a↵ect the EW phase transition.

Previous studies have highlighted the importance of considering impurities and their

impact on the electroweak phase transition and on cosmological phase transitions in general

[17–52]. In particular, the case of cosmic strings has been previously investigated in [22,

23, 29, 30, 38].

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

coupling strength . This portal may be thought of as being e↵ectively generated from

loops of the KSVZ fermions, or it could be present in the theory already at the tree level.

The Lagrangian of the theory reads

L = @µ�@
µ�⇤ +

1

2
@µh@

µh� VPQ(|�|)� VEW(h;T )� 

✓
|�|2 � f2

a

2

◆
(h2 � v2) (2.1)

and we only consider scenarios with  > 0. Here VPQ is the potential responsible for the

PQ symmetry breaking,

VPQ = �m2|�|2 + ⌘|�|4, (2.2)

where

� =
1p
2
⇢(x)ei↵(x), (2.3)

In (2.1) VEW(h) is the potential energy of the Higgs sector, with the Higgs doublet such

that hHi = (0, h/
p
2), and we have included temperature corrections only in the purely EW

part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.
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The portal coupling  is essentially a free parameter of the model. On the other

hand, this portal is unavoidably generated by loops of the KSVZ fermions responsible

for the mixed PQ-QCD anomaly. In particular, for KSVZ fermions coupled to the PQ

field with a yukawa interaction y = M /fa and to the SM only via QCD, the portal

with the Higgs arises by a three-loop diagram involving tops, which can estimated as

rad ⇠ 10�5(M /fa)2. If the KSVZ fermions have some mixing sin ✓ with the SM in order

to allow them to decay, of the form y� ̄t, then the contribution to the portal is at one

loop and scales as rad ⇠ 10�2 sin2 ✓ [AM: Actually here there is some assumption, maybe

not needed] Depending on the specific UV completion, there could be other contributions

to the coupling. In the following we will treat  as a free parameter.

2.1 Scalar potential and its extrema

In this paper we will consider two possible scenarios for the EW sector:

• In the first case we stick to the SM potential, including leading thermal corrections

in the high-T expansion:

VEW = VSM ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

1

4
�h4 (2.4)

where ch ' 0.393.. in the SM. Here the critical temperature Tc is defined as the

temperature at which the Higgs mass is vanishing.

• In the second case, we take an EW potential which serves as a benchmark for scenarios

with first order EW phase transitions, where there is a barrier between the EW

preserving minimum and the EW breaking vacuum at all temperatures:

VEW = V� ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

�

3

m2
h

v2
h3 +

1

4
�h4 (2.5)

We consider the same ch as in the SM for definiteness, and � < 0 determines the

barrier height (this case reduces to the SM potential for � = 0). For a given value of

�, the other parameters are chosen to reproduce the Higgs mass and vev

µ2 =
m2

h

2
(1 + �) � =

m2
h

2v2
(1� �) (2.6)

In this model Tc identifies the temperature where the two minima are degenerate.

We will chose regimes of couplings such that at T = 0 there is a global minimum where

the electroweak and PQ symmetries are spontaneously broken, with scales v = 246 GeV

and fa respectively. This point remains the global minimum of the scalar potential up to

a critical temperature Tc, and is defined as

A :

✓
⇢ =

r
f2
a +



⌘
(v2 � v2(T )), h = v(T )

◆
(2.7)

where v(T = 0) = v. For T > Tc the point A becomes either a local minimum or a saddle,

while the global minimum is

B :

✓
⇢ =

r
f2
a +



⌘
v2 ⌘ f̃a, h = 0

◆
(2.8)
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that hHi = (0, h/
p
2), and we have included temperature corrections only in the purely EW

part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.
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time of the EW phase transition. It is hence an important to study of the presence of the
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Previous studies have highlighted the importance of considering impurities and their
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23, 29, 30, 38].
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part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.
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The portal coupling  is essentially a free parameter of the model. On the other

hand, this portal is unavoidably generated by loops of the KSVZ fermions responsible

for the mixed PQ-QCD anomaly. In particular, for KSVZ fermions coupled to the PQ

field with a yukawa interaction y = M /fa and to the SM only via QCD, the portal

with the Higgs arises by a three-loop diagram involving tops, which can estimated as

rad ⇠ 10�5(M /fa)2. If the KSVZ fermions have some mixing sin ✓ with the SM in order

to allow them to decay, of the form y� ̄t, then the contribution to the portal is at one

loop and scales as rad ⇠ 10�2 sin2 ✓ [AM: Actually here there is some assumption, maybe

not needed] Depending on the specific UV completion, there could be other contributions

to the coupling. In the following we will treat  as a free parameter.

2.1 Scalar potential and its extrema

In this paper we will consider two possible scenarios for the EW sector:

• In the first case we stick to the SM potential, including leading thermal corrections

in the high-T expansion:

VEW = VSM ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

1

4
�h4 (2.4)

where ch ' 0.393.. in the SM. Here the critical temperature Tc is defined as the

temperature at which the Higgs mass is vanishing.

• In the second case, we take an EW potential which serves as a benchmark for scenarios

with first order EW phase transitions, where there is a barrier between the EW

preserving minimum and the EW breaking vacuum at all temperatures:

VEW = V� ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

�

3

m2
h

v2
h3 +

1

4
�h4 (2.5)

We consider the same ch as in the SM for definiteness, and � < 0 determines the

barrier height (this case reduces to the SM potential for � = 0). For a given value of

�, the other parameters are chosen to reproduce the Higgs mass and vev

µ2 =
m2

h

2
(1 + �) � =

m2
h

2v2
(1� �) (2.6)

In this model Tc identifies the temperature where the two minima are degenerate.

We will chose regimes of couplings such that at T = 0 there is a global minimum where

the electroweak and PQ symmetries are spontaneously broken, with scales v = 246 GeV

and fa respectively. This point remains the global minimum of the scalar potential up to

a critical temperature Tc, and is defined as

A :

✓
⇢ =

r
f2
a +



⌘
(v2 � v2(T )), h = v(T )

◆
(2.7)

where v(T = 0) = v. For T > Tc the point A becomes either a local minimum or a saddle,

while the global minimum is

B :

✓
⇢ =

r
f2
a +



⌘
v2 ⌘ f̃a, h = 0

◆
(2.8)

– 3 –

Assume too slow hom. 
nucleation for simplicity B A



FOPT + PQ
Simone Blasi - Asymptotic & Friends

ξ ∼ 1

H−1



= E hom

Critical bubble

B        A→

FOPT + PQ
Simone Blasi - Asymptotic & Friends



= E hom (κ = 0)

Critical bubble

B        A→
string B

FOPT + PQ
Simone Blasi - Asymptotic & Friends



≲ E hom (κ/η ≪ 1)

Critical bubble

String B        String A→
string B

FOPT + PQ
Simone Blasi - Asymptotic & Friends



string B

≪ E hom (κ/η ∼ crit.)

Critical bubble

String B        String A→

FOPT + PQ
Simone Blasi - Asymptotic & Friends



5.3.1 Results for the string seeded tunneling

With all the previously introduced computational tools, we now show some results for

the tunneling seeded by the axion string. We considered a benchmark with a moderate

hierarchy between mh and m⇢ so that numerical routines are stable, but the qualitative

conclusions will be generic. We study the e↵ect of the axion string on the EW phase

transition as a function of the ratio /⌘, focusing on region I and II in Figure 4.

First, in Figure 6 (left) we show the bounce action for the seeded phase transition,

computed with the three di↵erent methods illustrated above, in the respective regime of

validity. We see that the three methods nicely complement each other in providing the

complete picture of the seeded bounce action. In the same plot, we indicate the value of

the action for the homogeneous tunneling. We selected as representative temperature the

value T ' 35 GeV where the homogeneous tunneling rate is maximal. In the shape of

S/T as a function of /⌘ we recover the features of the exponential decoupling which we

have already illustrated in Figure 3. For /⌘ . 0.15, the seeded nucleation is very fast

and catalyzes e�ciently the EW phase transition. When reducing /⌘ the axion string

decouples exponentially and for /⌘ < 10�2 it cannot influence anymore the EW phase

transition.

In Figure 6 we display the bounce actions as a function of the temperature. In orange

is reported the homogeneous bounce action, which is too suppressed to lead to successful

nucleation. On the contrary, on the selected benchmark for /⌘, the seeded tunneling rate

is large enough to satisfy the nucleation condition in (5.3) and to lead to a seeded phase

transition into the EW breaking vacuum at T/Tc ' 0.45.

50

100

150

200

�

Figure 6: ...

In order to characterize the feature of the seeded phase transition, we can further

inspect the shape of the nucleated bubble on the axion string focusing on the benchmarked

star of Figure 6. In Figure 7 (left) we show the bubble profile of the Higgs field, which

clearly develops on top of the string core (illustrated as a grey band in the center of the

bubble). The Higgs is zero far from the string, and it develops a non vanishing expectation

value in the bubble. Note that the bubble has a non spherical shape, elongated along the

string direction. In addition, note that the value of the Higgs field close to the center of
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• Profile of the critical bubble:

Figure 9: Contours of the Higgs field corresponding to the critical bubble for the string–

seeded bounce, evaluated at the nucleation temperature Tn ' 35 GeV for the benchmark

m⇢ = 2.5 TeV, � = �1.6 and /⌘ = 0.06, obtained by solving the Higgs PDE. The

contours highlight the non spherical nature of the bubble, elongated along the direction

of the string, which sits at r = 0 and extends vertically along z. The value of the Higgs

field in the interior of the bubble (release point) very close to the string core is actually

larger than v = 246GeV indicating that this tunneling event is partially reconstructing the

profile of string A, which has a Higgs core of about 350 GeV in this benchmark.

Notice that this temperature approximately corresponds to the maximal homogeneous

tunneling rate (which is still too slow for successful nucleation).

In Fig. 8 (right) we show the bounce action for the seeded phase transition computed

according to the three di↵erent methods illustrated above, in the appropriate regime of

validity. We see that the three methods nicely complement each other in providing the

complete picture for the seeded bounce action. We selected as a representative temperature

the value T/Tc ' 0.45, which corresponds to nucleation for /⌘ = 0.06. In the same plot,

we show for comparison the value of the homogenous bounce action at this temperature,

which is independent of /⌘.

The shape of S/T as a function of /⌘ shows some of the features that we have already

encountered in the previous sections. In particular, for /⌘ . 10�2 the string e↵ectively

decouples and it can no longer influence the EW phase transition. As a consequence, the

seeded bounce action reduces to the homogenous one. On the other hand, for 10�2 . /⌘ .
0.1 seeded nucleation is very fast and catalyzes e�ciently the EW phase transition. These

values of /⌘ are in fact close to the classical instability (occurring here at /⌘ ⇡ 0.15)

and the barrier for seeded tunneling is significantly suppressed.

In order to characterize the features of the seeded phase transition, we can further

inspect the shape of the critical bubble focussing on the red–star benchmark of Fig. 8. In

Fig. 9 we show the Higgs profile corresponding to the seeded bubble nucleated around the
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Figure 1: Three–dimensional representation of a critical bubble of broken electroweak

symmetry seeded by the QCD axion string. The string is shown in red, and it is taken to

be straight and aligned with the vertical z direction. The Higgs bubble in green is nucleated

around the string with a non–spherical shape, corresponding to the surface where the Higgs

field is h(r, z) ⇠ 25GeV for illustration purposes. Detailed information is given in Sec. 5.3.

Let us also mention that, as one expects a large hierarchy between the EW scale and

the PQ scale, our analysis will be based on an e↵ective field theory (EFT) for the Higgs field

where the heavy degrees of freedom (including the basic axion string) are integrated out 3.

Our EFT matches the known results for the SM + axion (or ALP) EFT, see e.g. [74–76],

but additionally allows to take into account the presence of the axion string in a simple way.

We will also comment on how the relevance of the di↵erent higher–dimensional operators in

the ALP EFT is modified in the string background. We believe that our approach provides

an e�cient framework to study the dynamics of EW–scale states coupled to strings of large

tension, which can be applied to many extensions of the SM.

This paper is organized as follows. In Sec. 2 we introduce our Lagrangian and comment

on the di↵erent realizations depending on whether the EW phase transition is first order

or not. We also present a brief overview of the possible QCD axion string solutions allowed

by the model. In Sec. 3 we derive the EFT for the Higgs field in the string background,

and carry out the relevant computations that are needed to study the thermal history of

the Higgs sector. This is discussed in detail in Sec. 4 for the minimal SM + PQ scenario,

and in Sec. 5 for a model with a first order EW phase transition. We conclude in Sec. 6.

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

3
See [72, 73] for a similar approach in the context of branes and strings with fluxes.
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- Percolation as interplay between seeded nucleation 
rate and density of defects


- Axion—seeded EWPT effectively 


- Different velocities parallel or orthogonal to the string?


- Gravitational wave emission before collision (non-
spherical bubbles)?
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Summary
• The presence of impurities in the early Universe can strongly affect the way a phase 

transition proceeds


• The xSM with  symmetry is arguably the simplest (and complete) example for a 
seeded EWPT


• Other defects can exist at the time of the EWPT: dedicated study of QCD axion strings 
in KSVZ model with Higgs portal


• Pheno aspects of seeded phase transitions: percolation, slow transitions, expansion 
of non—spherical bubbles, features in the GW signal?
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Summary
• The presence of impurities in the early Universe can strongly affect the way a phase 

transition proceeds


• The xSM with  symmetry is arguably the simplest (and complete) example for a 
seeded EWPT


• Other defects can exist at the time of the EWPT: dedicated study of QCD axion strings 
in KSVZ model with Higgs portal


• Pheno aspects of seeded phase transitions: percolation, slow transitions, expansion 
of non—spherical bubbles, features in the GW signal?
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See also Yajnik, PRD (1986)
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Seeded EWPT at LISA

Figure 7: Peak frequency and amplitude of the gravitational wave signal from the homo-

geneous and catalysed transitions for the parameter points discussed in section 4.5. The

solid lines indicate the catalysed transitions for di↵erent ⇠ values and the dashed line shows

the homogeneous transition. The coloured contours indicate the signal to noise ratio in

LISA.

The decorrelation of ↵ and Rp for seeded transitions with small ⇠ manifests in figure 7

as almost vertical trajectories. This is as Rp is fixed by the domain wall separation, so the

peak frequency shifts only due to the change in Tp as  is varied, while the peak amplitude

increases as ⌦gw / ↵2Rp. This is in contrast to the homogeneous line and the transitions

for ⇠ = 102 where the timescale is set instead by the nucleation rate and the peak frequency

shifts more significantly due to the changing size of bubbles as they collide. Similarly to

figure 6, a smaller ⇠ generically leads to a larger signal amplitude. However, this does not

necessarily translate in a larger SNR because of the shift to lower frequencies where LISA

starts losing sensitivity. In this regard, future experiments such as µAres [126] could more

e�ciently probe the gravitational background in the case of sparse networks.

6 Conclusions & Outlook

The xSM is a simple model which encapsulates new physics that can modify the EWPT,

possibly leading to an observable spectrum of GWs. The Z2 symmetric limit of this model

has been put forward as a test case for simple weak scale new physics that can remain

hidden from current collider and precision searches, although it may be within reach of

future colliders.

We have shown that in a large part of the relevant parameter space, the phase transition

dynamics are modified due to the presence of domain walls. The decay of the false vacuum

proceeds through tunnelling catalyzed by domain walls, instead of through homogeneous

bubble nucleation. This changes the viability of specific parameter space points in the

model and qualitatively modifies the gravitational wave signal.
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