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Disclaimer

| will talk about Einstein gravity.
However, this approach can also be applied to different theories.



Gravity is perturbatively non-renormalizable at two-loops.






Weinberg’s conjecture: There exists a nonperturbative dynamical mechanism which renders physical
scattering amplitudes finite and computable at energy scales exceeding the Planck scale: a nontrivial UV
fixed point.
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Weinberg’s conjecture: There exists a nonperturbative dynamical mechanism which renders physical
scattering amplitudes finite and computable at energy scales exceeding the Planck scale: a nontrivial UV
fixed point.

Usually technically investigated via the Functional Renormalization Group

Dynamical Triangulations
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The Effective Average Action I';[¢]
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IR uv
2 __ 2 2 _
pr=0 Kk pr== e UV- and IR finite
lim Iy — T Aim Iy =5 * Fully nonperturbative or exact

Asymptotic Safety via FRG: A given trajectory has an acceptable UV limit, if and only if its

endpoint in the UV is given by the nontrivial fixed point of the RG flow.



T 0Q

Type IIIb

[Reuter 1996, Reuter-Saueressig and Percacci’s book]

cauge fixing + ghosts

g(k) = G(k)k’ | KOk = By(g, 1)
A(k
k) = ]52> l kOk Ak = Ba(g, A)
gy = A =0
ﬁg (g*a )‘*) =0 Gaussian fixed point
6}\(9*))\*) — () g >O, )\* > ()

Non-Gaussian fixed point
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Motivation

Perturbative renormalization Non-perturbative renormalization

Dimensional regularization, proper time, ... Asymptotic Safety - Functional Renormalization Group

Gravity is perturbative non-renormalizable UV-completion via an interacting fixed point

Effective action contains
unphysical information:
Field parametrization - gauge dependence

E.g. dimensional regularizationind =2 + ¢
The tixed point of order lies beyond
perturbation theory.

1. Effective action is off-shell

On-shell effective action:
no unphysical dependencies

2. Regulator breaks symmetry
(diffeomorpshism invariance)

On-shell effective action results tested in Extract physical information from the flow of
precision measurements in QCD. the effective action is a arduous task.
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Motivation

Perturbative renormalization

Non-perturbative
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Perturbative non-
renormalizable

Affected by non-
ohysical information

Contains only
ohysical information

New subtraction scheme + essential renormalization group
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Idea

Use perturbative methods to investigate asymptotic safety

E.g. dimensional regularization with non-minimal subtraction scheme

E.g. proper time regularization

Do a fully functional approximation to keep invariants to all orders:
non-minimal subtraction scheme.

RG improvement of one-loop eftective action “looks like” non-perurbative RG

Essential RG: RG scheme to keep unphysical dependencies under control
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DeWitt metric

Essential RG

In this first analysis: investigation of the parametrization dependence [Gies, Knorr, Lippoldt 1507.08859]

1
Juv = Guv + Ay + ) (7'1 huphy, + Tohhyy + T3Guuhpe 7 + T4§MVh2) T O(hQ)

5S
0N (2)0hpx(y)

Background field method: S (g1, y) =

Use the EoM for §: dependence on the parametrization should disappear.

Critical exponent
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1-loop effectie action

[Weinberg, Niedermaier, Benedetti, Falls, Jack & Jones, Christensten & Duff, Kawai, Kluth 2409.09252, ...]

Essential RG

[Martini, Ugolotti,
Zanusso, Vacca, Del

ldea: in gravity we should keep track of two dimensionalities.
One gets regularized, one is dynamical d = g/’j (components of the field) porro. Sauro]

Expand the trace up to second order in curvature, exploiting the EOM
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Revisit Weinberg's original conjecture of Asymptotic safety: gravity has a fixed pointind =2 + €
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[Weinberg, Niedermaier, Benedetti, Falls, Jack & Jones, Christensten & Duff, Kawai, Kluth 2409.09252, ...]

Essential RG

[Martini, Ugolotti,
Zanusso, Vacca, Del

ldea: in gravity we should keep track of two dimensionalities.
One gets regularized, one is dynamical d = g/{f (components of the field) porro. Sauro]

Expand the trace up to second order in curvature, exploiting the EOM

d d d " (d
[N = /ddx Vg (aoc(i ),ud | ZZE ;ud_2R | Z{ iud_4GpR | Z{ iud_4€> + finite terms

1. We do not need to introduce counter-terms outside the Einstein-Hilbert action.

2. The vacuum energy is only renormalised due to the singular term in d = 0 dimensions.

Critical exponent




2. Dimensional regularization
Non-minimal subtraction scheme

de—d _q

1-loop effectie action

Compute traces using proper time techniques and evaluate UV singular part /O dss

Essential RG
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oo de—d ,ud_dc
Compute traces using proper time techniques and evaluate UV singular part /O dss ~ 2o d.
O
=
1]
(I
(4m)d/2 " (4m)de/2
)
. ) 1 2
The HK coefficients then become aq(d) :§(d —3)d 3
) 11, <
az(d) = (i) 12 (d* — 3d — 36)
_ 1 d®+19d* — 566d + 1200
ay(d) = 2 _
(47) 120(d — 2)
y 1 1

(d® — 33d + 540) ,

24(d) = (47)2 360
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2. Dimensional regularization
Essential renormalization group 205000,
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Renormalization scheme which restricts the analysis to the running of the essential couplings >

Couplings which contribute to the scaling of physical observables such as scattering cross sections
(scaling exponents)

Essential RG

Inessential couplings associated with redundant operators
— fixed by renormalization conditions achieved by a field reparameterisation along the RG flow.

For the free theory S = /dd:c NG (pk " ﬁ@(g))

(flat space, GFP) 8m 107G

See = — [ d% \/ga we
ct — x\/gao(d)d

ap 1 Renormalization

- — —An ] — — — d — 3 . .
br dp + 8mao ( ) condition

Critical exponent
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2. Dimensional regularization
Essential renormalization group
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Essential coupling (dimensionless - invariant under rescaling of metric)

d—2
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using ren. condition

Essential RG

o (d—3)(d(d(d+19) — 566) + 1200)n°

B = (d—2)1+ 5 ((d — 3)d — 36)) e
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2. Dimensional regularization
Essential renormalization group
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Essential coupling (dimensionless - invariant under rescaling of metric)

P T
=G —
" <47r(d - 3)> | Y 2
using ren. condition —
o
1 (d — 3)(d(d(d + 19) — 566) + 1200)n> A
= (d—2)n+ 5 ((d—3)d — 36)n° 1 ¥
| | iti =0.16 0 = by = 2.296
Fixed point and critical exponent (d = 4): 7« = 0.10, = on = 2.
T)="1]x
e
! 0.002
0.25 | N
0.20° 2.2
I —0002‘ 4=
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This was dim. reg.

Can we implement this into a flow equation?
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Essential RG
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effective action M Sﬁc =
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Flow equation KOkl = h Tr exp(—K 18P k=2) + O(h?)
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One-loop effective action =S+ Trlog K 1S /M2 +0(R?) . take M — oo
l evaluate the trace via proper-time parametrization O
hofRlo1 =
IRand UVregulated 1, ,, =5— 5/ \dS_Tr (exp(_sK—ls(Q)) _ exp(—3M2)) +OR?) . :
effective action M Sﬁc =
-cut
o l take k-derivative
Flow equation KOkl = h Tr exp(—K 18P k=2) + O(h?)
replace classical action and the metric by the effective
l action and an RG-improved DeWitt metric
One-loop RG-improvement: kO = Tr exp(—K,;ll“,f) (p)k2)

It suffers from unphysical dependencies, it is off-shell

Critical exponent
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Add an extra term: allow the field variable coupling to the source to tlow with k

When deriving the effective action, do the Legendre transform:
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Add an extra term: allow the field variable coupling to the source to tlow with k

When deriving the effective action, do the Legendre transform:

Essential RG

6—I‘k[¢] — /d26—8[2]+(q3k[>2]_¢).51(;_£§5]

Introduce the RG kernel: U [d] = (kOpdi|R])

Generalized perturbative essential flow equation

absorb off-shell term proportional to the EoM
into the kernel

Only the essential couplings run.

Critical exponent
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Consider again Einstein-Hilbert trunctation — remove curvature squared terms by field redefinitions
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of operators up to desired
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MES: flat space and Y., =0 — RG condition same as before (up to a constant)
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Consider again Einstein-Hilbert trunctation — remove curvature squared terms by field redefinitions
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Consider again Einstein-Hilbert trunctation — remove curvature squared terms by field redefinitions
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of operators up to desired
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MES: flat space and Y., =0 — RG condition same as before (up to a constant)

Absorb curvature squared terms by
SOlViﬂg fOI" YR> YRicci
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Consider again Einstein-Hilbert trunctation — remove curvature squared terms by field redefinitions
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SOlViﬂg 'I:Or YR> YRicci

Critical exponent




3. Proper time regularization
MES @ order curvature squared
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Consider again Einstein-Hilbert trunctation — remove curvature squared terms by field redefinitions

<k’6*k + / "2\ /g 5 > [ =Tre K TP+ _ oy o~ Qrelelk
Juv

Essential RG

RG kernel: linear combination  VY9%,l9] = v9uv + YRRGuv + YRicei Ry
of operators up to desired
truncation order

oI’ L \/§ P uv \/§ 12% 1 Hv
EOM Som 2 877 TlenG \\U 20V

MES: flat space and Y., =0 — RG condition same as before (up to a constant)

Absorb curvature squaredterms by | ¢ e for kdiCa
SO|V|ng fOI" YR, YRicci

ﬁ — 1 — — —
i 2(al 3) Solve for g4

Our non-minimal variant of dimensional regularization coincides with proper

Critical exponent

time regularization, at least within the early time heat kernel expansion.
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MES @ order curvature squared
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3. Proper time regularization
MES @ order curvature squared

Let us use it as a tool to
analyze parametrization f

1 | 1 1 1 \/
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Essential RG

1

Expand the essential beta function:

1—d/252 (d —3)(1200 + d(—566 + d(d + 19)))(47T)2—d

~3 ~4
=2 G3 + 0(GY

Ba=(d— 2)G + %(—36 + (d — 3)d)(4n)

Critical exponent

No dependence on the 7's up to this order.




Going to higher orders in curvature, one can lift the dependence on the parameterisation at
higher order in G.
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Expansion up to O(R?) —  No dependence on the parametrization up to O(G?)
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e Heat kernel expansion on a d-sphere [Kluth, Litim 1910.00543]

e Spectral sum on a d-sphere or d-hyperboloid e Evaluation of non-commuting traces

Essential RG

RG kernel: ¥, =v(R)g,w

Fixed point and the critical O(RM) 0
exponent converges rapidly R 5
R? 2.296
R’ 2.312
R* 2.312 ;
RS 2.311 >
R> 2.311 8
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a manner determined by 6.
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Using our scheme, we can fix the renormalization conditions at k — 0 in order Q
O

to compare results on the lattice.

How does @ appears in relations between various scales, namely G(A) at bare scale A and the observed
(renormalized) G (Planck length)?

Essential RG

As the bare coupling is sent to the fixed point, the cutoff scale in physical units must diverge in
a manner determined by 6.

At the GFP G(k — 0) = k972G

lim G

As we send G(A) — G, we define the exponent A G(A) G, G, — G(M)|A

The correlation length in units of the cutoff {¢=A¢p — _lim {x —
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ength Zp (minisuperspace).
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=

Suppose a“?/G — 0, K — Ky %

ldentifying a = 1 then Ga 92 ! -
ying A hop — r|(d=2)/0

Work in % then L*a=* = (N,) is the expectation value of the number of four simplices
L fixed by tuning the bare cosmological constant.

radius of the sphere

|dentify the effective action with the Einstein-Hilbert action obtained in a continuum when k — 0

They work in Lorentzian signature: a and a, distinguished but related
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We can identify G and p and the dim.less coupling G?p from their minisuperspace effective action.

O
=
How is k related? a o< 1 X VG g
VALE k& 0
1
Close to the GFP ¢ x L ak?
1
Closg to the £ L R o2 o 1 _
putative UV-FP ak Ky — K|AcDT

0 — 441 [Ambjarn, Gizbert-Studnicki, Gorlich,
CDT Németh 2408.07808, 2411.02330]

Reasons for such an incompatibility?
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Conclusions & Outlook

Use perturbation theory to extract physical information (on-shell).

New subtraction scheme + essential renormalization group

1 Parametrization dependence disappears order by order in perturbation theory
2 Critical exponent converges rapidly to6 = 2.311

3 Comparison with the lattice
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New subtraction scheme + essential renormalization group

1 Parametrization dependence disappears order by order in perturbation theory
2 Critical exponent converges rapidly to6 = 2.311
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ToDo Analyze also gauge-dependence
Test scheme in other theories - add matter
Better understanding of comparison with lattice

Go two loop in proper time?




