4-year overview

Huan Zhong Huang For UCLA Experimental Group

January 10, 2025

Groups members: current and past

Graduate students

CURRENT: Thomas Marshall, Xiatong Wu, Yunshan Cheng, Aditya Dash & Maria Sergeeva previous (& current location): Zhiwan Xu (LANL)

Postdocs

current:

previous (& current location): Zhongling Ji (Syracuse/Jlab)

Undergrads CUrrent: Nihal Gozlukluoglu Karakus, Lyra Yi previous (& current location):

Staff: Oleg Tsai, Gang Wang and Huan Zhong Huang

List main accomplishments in past 4 years

- Spearhead design of fEMcal for ePIC. From conceptual to final design review scheduled in spring 2025.
- Coordinated efforts in developing TDR, with Version 1 released to ePIC collaboration in December 2024.
- Carry out the eRD106 to finalize the design of fEMCal, eRD106 will be completed in Feb 2025.
- Coordinated successful final design reviews for SiPMs and scintillation fibers (CD3A, CD3B).
- Coordinated efforts in developing calorimetry concepts for ATHENA detector.
- Developed the GEANT description of the fEMCal detector

Detector construction plans at campus/lab

- UCLA group will coordinate overall efforts to build fEMCal.
- UCLA is a construction site to receive and certify all scintillation fibers for fEMCal.
- UCLA electronics shop will produce all SiPM boards.
- UCLA students/staff will test/calibrate all SiPM boards.
- UCLA staff will oversee installation/integration and commissioning of fEMCal in ePIC

Key roles in ePIC

- Huan Z. Huang and Oleg Tsai are serving as DSLs for fEMCal.
- O.Tsai is serving as technical coordinator for fEMCal.
- O.Tsai is serving as co-convener for ePIC calorimetry WG.

Previously

- O.Tsai served as co-convener of joint ECCE and ATHENA calorimetry WG.
- O.Tsai served as co-convener of ATHENA calorimetry WG.

Key non-EIC accomplishments

Worked on sPHENIX EMC construction

Participate in the sPHENIX EMC calibration effort

STAR

CME upper limit from isobar collisions CME related charge separation from BES II data EM field effect on directed flow of charged particles CMW searches and background studies Hyperon directed flow and hyperon-K correlations SPHENIX

Heavy flavor physics program

3-4 EIC highlights with pictures (multiple slides)

Table 8.44: Some requirements on performance of fEMCal and its parameters

Parameter	Requirements	Comments
Geometrical Acceptance	$1.4 \lesssim \eta \lesssim 3.9$	$ m R_{out} \sim 190~ m cm, Z_{frontface} \sim 341~ m cm$
		Hole for the beam pipe $30 \times 30 \ cm^2$
Integration envelope	R_{max} =205 cm, Depth = 27 cm	
E_{min} in a single tower	15 MeV	Minimal shower energy 50 MeV
E_{max} in a single tower	100 GeV	18 imes 275 GeV, ep
Maximum rate in a single tower	10 kHz	E_{thr} =15 MeV, 10 × 275 GeV ep
		500 kHz collision rate
Radiation doses	15 kRad	Integrated over 10 years
Neutron fluxes	$4 \times 10^{11} \text{ n/cm}^2$	1 MeV eq, integrated over 10 years
Energy resolution	$\lesssim 12\%/\sqrt{E} \oplus$ (2)%	Verified in the test beams
γ/π^0 separation	up to 50 GeV	$\sim 5\%$ mis-identification at 50 GeV
Depth	23 X ₀	Minimize leakages
Detector parameters	Units	Comments
Detector parameters X ₀ , R _m	Units 7 mm, 19 mm	Comments Rad. length, Moliere radius
Detector parameters X ₀ , R _m f _{samp}	Units 7 mm, 19 mm 2%	Comments Rad. length, Moliere radius e/h ≃1 above 10 GeV
Detector parameters X_0, R_m f_{samp} Scintillating Fibers	Units 7 mm, 19 mm 2% Ø 0.47 mm	Comments Rad. length, Moliere radius e/h ≃1 above 10 GeV Single clad sc. fibers
Detector parameters X_0, R_m f_{samp} Scintillating Fibers Light yield	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV	Comments Rad. length, Moliere radius e/h ≃1 above 10 GeV Single clad sc. fibers Test beam results.
Detector parameters X_0, R_m f_{samp} Scintillating Fibers Light yield Transverse size of tower	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV 2.5 cm × 2.5 cm	Comments Rad. length, Moliere radius $e/h \simeq 1$ above 10 GeV Single clad sc. fibers Test beam results. Matches R_m
Detector parameters X_0, R_m f_{samp} Scintillating Fibers Light yield Transverse size of tower Transverse size of installation block	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV 2.5 cm × 2.5 cm 10 cm × 10 cm	Comments Rad. length, Moliere radius $e/h \simeq 1$ above 10 GeV Single clad sc. fibers Test beam results. Matches R_m Block of 16 towers
Detector parameters X_0 , R_m f_{samp} Scintillating Fibers Light yield Transverse size of tower Transverse size of installation block Total number of towers	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV 2.5 cm × 2.5 cm 10 cm × 10 cm 18320	CommentsRad. length, Moliere radius $e/h \simeq 1$ above 10 GeVSingle clad sc. fibersTest beam results.Matches R_m Block of 16 towers
Detector parameters X_0, R_m f_{samp} Scintillating Fibers Light yield Transverse size of tower Transverse size of installation block Total number of towers Photodetector	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV 2.5 cm × 2.5 cm 10 cm × 10 cm 18320 S14160-6015PS	Comments Rad. length, Moliere radius $e/h \simeq 1$ above 10 GeV Single clad sc. fibers Test beam results. Matches R_m Block of 16 towers Four $6 \times 6 \text{ mm}^2$ SiPMs per tower
Detector parameters X_0 , R_m f_{samp} Scintillating Fibers Light yield Transverse size of tower Transverse size of installation block Total number of towers Photodetector	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV 2.5 cm × 2.5 cm 10 cm × 10 cm 18320 \$14160-6015PS	CommentsRad. length, Moliere radius $e/h \simeq 1$ above 10 GeVSingle clad sc. fibersTest beam results.Matches R_m Block of 16 towersFour $6 \times 6 \text{ mm}^2$ SiPMs per tower15 um pixels size
Detector parameters X_0, R_m f_{samp} Scintillating Fibers Light yield Transverse size of tower Transverse size of installation block Total number of towers Photodetector Monitoring system	Units 7 mm, 19 mm 2% Ø 0.47 mm ~ 1600 pixels/GeV 2.5 cm × 2.5 cm 10 cm × 10 cm 18320 S14160-6015PS Blue LED	CommentsRad. length, Moliere radius $e/h \simeq 1$ above 10 GeVSingle clad sc. fibersTest beam results.Matches R_m Block of 16 towersFour $6 \times 6 \text{ mm}^2$ SiPMs per tower15 um pixels sizeLED integrated on SiPM board.

In preparation for Final Design Review, detailed detector engineering modeling. Table with detector parameters from TDR.

Forward EMCal progress 2023-2024

- Mounting scheme on fHCal designed.
- Structural
 Tests
 completed

- Installation tooling designed
- Installation
 procedures
 verified

 Prototyping of readout integration is in progress

 Refining of production methods is in progress

June 2nd, 2021

Director's Review

X. Dong

Major forward EMCal progress in 2024

- New highly efficient and compact light guide designed.
- Production method established.

Test Run at FNAL completed (06/13/2024) Goals to measure:

- Absolute Light Yield
- Uniformities of response Data analysis is in progress.

Readout:

- SiPM board designed and ~ready to produce prototypes
- FEB layout in progress, ~20% complete
- FEB RDO interface scheme defined.
- Power cable group definitions & rack space requirements in progress.
- Initial round of COTS DC/DC and SIPM radiation testing completed (UC Davis 64 MeV protons, May 2024)

UC EIC Students at FNAL.

Leveraged funding (grants due to MRPI project)

eRD106 ~ \$77k DOE support of 50% post-doc for three years ~ \$135k EIC support of UCLA staff ~ \$100k

Publications in past 4 years

- Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A 1026 (2022) 122447
- ATHENA Detector Proposal -- A Totally Hermetic Electron Nucleus Apparatus proposed for IP6 at the Electron-Ion Collider. JINST 17 (2022) 10, P10019

Future plans in the EIC program

- Finalize design of the fEMCal, produce TDR.
- Lead the fEMCal team through series of reviews toward construction phase.
- Complete the construction/installation/commissioning of the detector.

Work on simulations of physics measurements using the forward EMCal+Hcal+Tracking Topics: forward jets/heavy flavor physics 3D image of the nucleon and nuclei

Backup