
Determination of the αs(mZ) and Collins-Soper Kernel from EEC in electron-positron collision

Congyue Zhang arXiv: <u>2410.21435 v2</u> (Nov 26) Collaborators: Zhongbo Kang, Jani Penttala

Jan 09, 2024

Collins-Soper Kernel and TMD factorization

- CS-kernel \rightarrow crucial for Transverse-Momentum-Dependent (TMD) factorization
- The TMD factorization is a formalism to calculate observables in QCD scattering

Processes	Observables	
$e^+ + e^- \to h_1 + h_2 + X$	EEC, TEEC	
$e^- + p(A) \to e^- + h + X$		
$p + p(A) \to e^+ + e^- + X$	 X-section, Sivers asymmetry, single spin asymmetry 	

- Momentum and spin structure of hadrons/nucleus
- Quark Gluon Plasma
- Precision physics (W boson mass)

Collins Soper Kernel

- TMD factorization rely on TMD functions (PDF, FF, jet...)
 → non-perturbative information of momentum/spin structures
- All TMD functions depends on Collins-Soper scale (ζ). \rightarrow CS kernel K controls TMDs' **scaling** in ζ

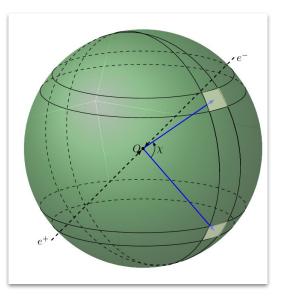
$$\frac{d\ln F(b,\mu,\zeta)}{d\ln\zeta} = \frac{K(b,\mu)}{2}$$

• The CS kernel K has perturbative & non-perturbative (large b)

$$K(b,\mu) = K_{\text{pert}}(b,\mu) - 2D_{\text{NP}}(b)$$

- CS kernel is conjectured to be universal (independent of process and observable)
 → it could be extracted from DY, SIDIS, e+ e- annihilation
- However, past phenomenological extractions limited to DY, SIDIS

Global Energy-Energy Correlator $e^+ + e^- \rightarrow h_1 + h_2 + X$


- No effort in extracting K from Energy-Energy Correlator (EEC) •
- EEC measures angular distribution of energy weight differential cross-section: •

$$\sum_{i,j} \int \mathrm{d}\sigma_{e^+e^- \to ij+X} \, \frac{E_i E_j}{Q^2} \, \delta(\cos\theta_{ij} - \cos\chi)$$

- χ : angle between pairs of final state particles
- Q: C.O.M energy

EEC is advantageous for extraction of K:

- less susceptible to hadronization effects • \rightarrow no reliance on TMDFF/TMDPDF
- TMDFF/TMDPDF have **dozens** of parameters • -> mixing with CS Kernel
- EEC only 2 parameters for NP TMD jet function • -> less mixing

Factorization for EEC in the back-to-back limit

$$\frac{d\Sigma}{d\chi} \propto Q^2 \sin(\chi) H(Q,\mu) \int_0^\infty db^2 J_0(bQ \sin(\frac{\pi}{2} - \frac{\chi}{2})) \mathbf{J}_{\mathbf{q}}(b,\mu,\zeta) \mathbf{J}_{\bar{\mathbf{q}}}(b,\mu,\zeta) e^{-2S_{\rm NP}(b)}$$

We use the following parameterization for NP Sudakov (hadronization effects)

$$S_{\rm NP}(b) = a_1 b^{a_2}$$

And for NP Collins Soper Kernel K we consider 2 parameterizations:

$$D_{\rm NP}^{\rm Fit\,1} = g_2 \, b \, b_*, \ D_{\rm NP}^{\rm Fit\,2} = g_2' \, \ln\left(\frac{b}{b_*}\right)$$

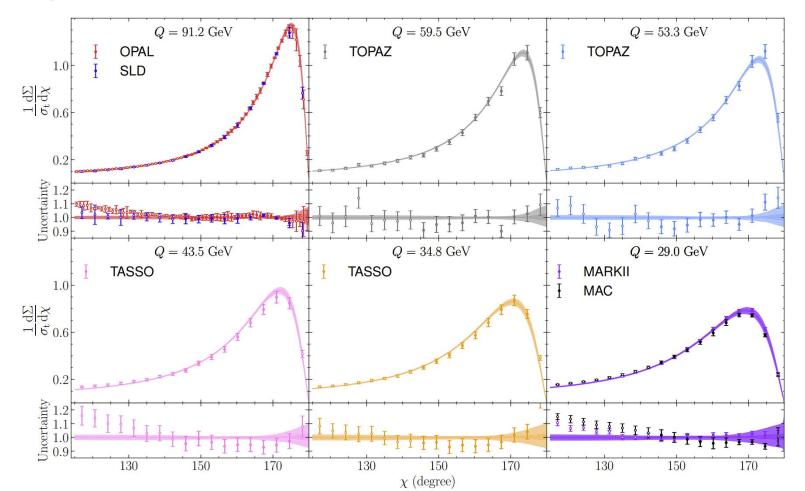
, where $b_*=b/\sqrt{1+b^2/b_{
m max}^2}$

04 / 11

Data selection

	$v1 \rightarrow v2$: Added 30 very low uncertainty OPAL data points		Collaboration	$\overline{Q({ m GeV})}$	N _{data}
	Criterias	٤	OPAL [16] SLD [14]	$91.2 \\ 91.2$	30
Provided both statistical and systematic uncertainties			$\begin{array}{c} \text{SLD} \left[11 \right] \\ \text{TOPAZ} \left[17 \right] \end{array}$	59.5	9
Measured both char	ged and neutral final state particles		TOPAZ [17] TASSO [18]	$\begin{array}{c} 53.3\\ 43.5\end{array}$	9 9
Q >= 29 GeV	(Avoiding quark mass effects)		TASSO $[18]$	34.8	9
145° < χ < 175°	(Focusing back to back region)		MARKII [21] MAC [20]	$\begin{array}{c} 29.0\\ 29.0\end{array}$	9 9
			Total		93

Fit Result

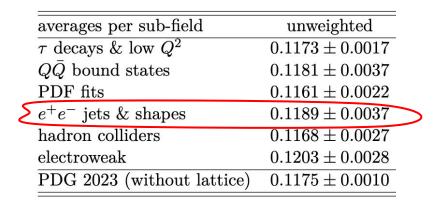

 $\chi^{2}/d.o.f = 0.95$

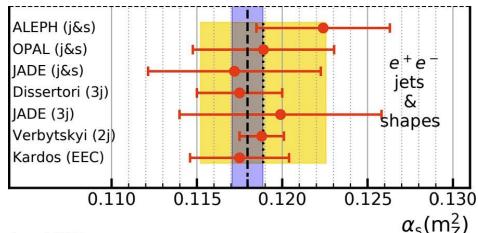
Collaboration	$Q({ m GeV})$	$\mathrm{N}_{\mathrm{data}}$	χ^2 (Fit 1)	χ^2 (Fit 2)
OPAL [16]	91.2	30	12.4	12.4
SLD [14]	91.2	9	2.5	2.4
TOPAZ $[17]$	59.5	9	11.3	11.3
TOPAZ $[17]$	53.3	9	12.7	12.7
TASSO $[18]$	43.5	9	8.6	8.7
TASSO $[18]$	34.8	9	10.3	10.4
MARKII [21]	29.0	9	12.8	12.8
MAC [20]	29.0	9	14.2	14.3
Total		93	84.8	84.9

$$S_{\rm NP}(b) = a_1 b^{a_2} \qquad \qquad D_{\rm NP}^{\rm Fit\,1} = g_2 \, b \, b_*, \, D_{\rm NP}^{\rm Fit\,2} = g_2' \, \ln\left(\frac{b}{b_*}\right)$$

	$lpha_{ m s}(m_Z)$	$a_1 \; (\mathrm{GeV}^{a_2})$	a_2	$g_2 \; ({ m GeV}^2)$	g_2'
Fit 1	$0.1193\substack{+0.0009+0.0008\\-0.0009-0.0013}$	$0.530\substack{+0.060+0.051\\-0.067-0.052}$	$1.152^{+0.045+0.064}_{-0.049-0.077}$	$0.076\substack{+0.014+0.015\\-0.013-0.012}$	N/A
Fit 2	$0.1193\substack{+0.0010+0.0009\\-0.0008-0.0013}$	$0.527^{+0.030+0.051}_{-0.036-0.058}$	$1.152^{+0.040+0.065}_{-0.038-0.079}$	N/A	$0.194\substack{+0.019+0.037\\-0.020-0.028}$

Comparison with data


Comparison of strong coupling constant


Our result from EEC (N3LL)

	$lpha_{ m s}(m_Z)$
Fit 1	$0.1193\substack{+0.0009+0.0008\\-0.0009-0.0013}$
Fit 2	$0.1193\substack{+0.0010+0.0009\\-0.0008-0.0013}$

v1: $0.1173 \rightarrow v2: 0.1193$

Other groups' αs(mZ) (PDG 2024)		
World Average	0.1180 ± 0.0009	
e+ e- shapes (NLL)	0.1189 ± 0.0043	
OPAL (NLL)	0.1189 ± 0.0037	

09 / 11

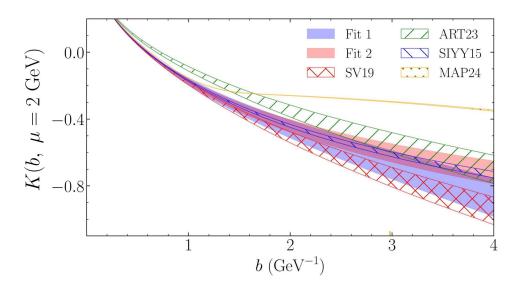
Comparison of CS kernel

SV19 (Scimemi, Vladimirov)

- Same parameterization as Fit 1
- SIDIS + DY

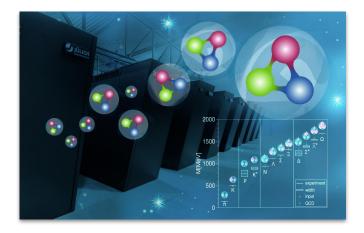
SIYY15 (Sun, Isaacson, C.Yuan, F.Yuan)

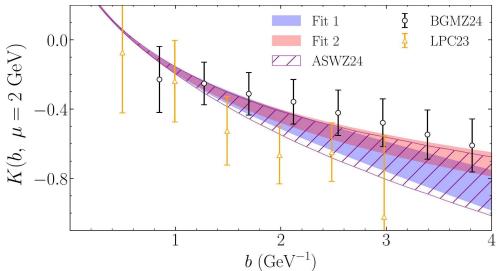
- Same parameterization as Fit 2
- SIDIS + DY


ART23 (Scimemi, Vladimirov)

- $bb_*(g_2 + g_3 \ln (b_*/b_{\max}))$
- DY

MAP24 (Bacchetta, Bertone, Bissolotti...)


- $\tilde{g}_2 b^2$
- ŠĪDIS + DY


$$D_{\rm NP}^{\rm Fit\,1} = g_2 \, b \, b_*, \, D_{\rm NP}^{\rm Fit\,2} = g_2' \, \ln\left(\frac{b}{b_*}\right)$$

CS kernel from Lattice QCD

Lattice QCD results (pion TMD wave functions): **ASWZ24** (Avkhadiev, Shanahan, Wagman, Zhao) **LPC23** (Chu, He, Hua, Liang, Ji, Schäfer...) **BGMZ24** (Bollwega, Gao, Mukherjee, Zhao)

Conclusion

- **First** simultaneous extraction of αs and Collins-Soper kernel from EEC
- **First** theoretical description of the EEC peak in the back-to-back region.
- Extracted α s consistent with the e+ e- average: α s(Mz) = 0.1189 ± 0.0037
- Extracted Collins-Soper kernel consistent with
 - \rightarrow phenomenological extraction from SIDIS and DY
 - \rightarrow Lattice QCD
 - \rightarrow more evidence for universality of NP CS Kernel

Thank you!