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Why Lattice Theory?

o Study of non-perturbative regime of QCD at lower energies
e QCD phenomena (e.g. confinement, phase transitions)
e First-principles calculations of quantities like PDFs

Temperature




Parton Distribution Functions and Amplitudes

e Parton Distribution Function (PDF)

o Light-cone Distribution Amplitude (LCDA)

e Provide non-perturbative inputs to calculate deep inelastic
scattering cross sections

o Essential to understanding of hadron internal structure,

collider physics . L Tre—




Why Tensor Networks?

e TN have recently become an active research area in lattice field
theory and hep

e TNS are efficient ansatz schemes for quantum many body problems
free from the sign problem

o MPS can efficiently handle many common sources of
error/complexity like high dimensionality and entanglement!
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Tensor Networks and Quantum Computing

e TNs easily simulate > 100 qubits :

e Reasons for TNs PN oy

a. Good testbed/alternative to quantum s

computing in the NISQ era ‘ \

b. Maximize what’s accomplishable by 5
classical hardware




The (1+1) Dimension Lattice NJL Model

e NJL model is an effective field theory describing low-energy
two-flavored QCD phenomena

e We study these phenomena on a lattice
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The (1+1) Dimension Lattice NJL Model

e Apply Jordan-Wigner
transformation to Hamiltonian

Spin Hamiltonian



PDF and LCDA Computations
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Tensor Network Methods and Algorithms

e We use ITensor and Julia for our code implementation

e Two challenges: state preparation and real-time evolution

o The MPS is efficient at simulating lattice theory in 1 spatial
dimension

e entropy area laws force an upper bound on entanglement entropy




State Preparation: Density Matrix Renormalization Group

e Instantiate a charge-preserving lattice to stay in the Q = 0 sector
e Apply DMRG to obtain the ground (vacuum) state
o Apply DMRG with penalty to obtain the excited (hadron) state
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Real-time Evolution: Time-Dependent Variational Principle

e Apply TDVP to time evolve MPS
e We found TDVP more accurate and less computationally
demanding than TEBD (trotterization)
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Results
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Conclusion

o Proposed a tensor network strategy for the (1+1)D NJL model

o Utilized a CP lattice and DMRG to prepare our hadron states

o Applied TDVP for real-time evolution of two-point correlators

o Simulated the PDF and LCDA in the continuum limit and observed
agreement with pQCD and non-relativistic limits

o Demonstrated advantage of tensor networks in the NISQ eral
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Outlook

e Include flavor degrees of freedom
o Study lattice gauge theories
o Extend to higher spatial dimensions (e.g. via PEPS)

16



17



