Finalizing 2024 FNAL Beam Test Results of EIC fEMCal

Yunshan Cheng UCLA Jan 9, 2025

Introduction

- Objective of eRD106: Develop readout of fEMCal with
 - improved uniformity

Directly relates to the constant term of energy resolution, when at highest energies $\frac{1}{\sqrt{F}}$ vanishes.

improved light collection efficiency

It is important to meet ePIC required lowest energies of 50 MeV, and to have good S/N ratio after SiPM's radiation damage.

 Measured uniformity and energy resolutions as a function of energies (2-10 GeV e-) and impact angles, spanning the acceptance of the forward fEMCal in ePIC.

Detector Setup

Available channels:

- 16 channel hodoscope (4x4 cm², 8 vertical + 8 horizontal bars)
- 1 Scintillator (4x4 cm²)
- 1 Cherenkov counter
- 1 PbGl channel
- 16 fEMCal channels (10x10 cm²)

Cherenkov

Detector Setup

- The PbGI Calorimeter and fEMCal can be swapped to be in front of the beam line.
- The fEMCal was placed on a swivel to change the angle of incidence.

Updates from preliminary results: Calibration

- SiPM boards were assembled from mixed SiPMs with slightly different operation voltages.
- Calibration factors of 16 channels:
 - Fit histogram of energy deposition of each channel.
 - Find scale factors that align these energy peak positions.
 - {1.07, 1.02, 1.06, 0.97, 0.98, 1.032, 0.95, 1.01, 0.95, 1.005, 1.018, 1, 1.0, 1, 1.02, 1.}

Updates from preliminary results: falloff at periphery of the towers

- Total energy decreases as the reconstructed position gets farther from the closest center of towers.
- It is a systematic effect near the tower boundaries, and is independent of energies.
- Add correction factor $\frac{1}{1+p_1*|x_{reco}-x_{cen}|}$ to mitigate position-dependent effects.

Uniformity

- Updated calibration and corrections of systematic falloff effect at tower boundaries improves uniformity.
- fEMCal's non-uniformity is 2%-4% at 4 GeV, and it improves with increased impact angle.

e- Beam Test with PbGI

- Constant term of e- beam resolution is 3.5%, and FNAL website suggests 2.7%.
- Due to less beam time and limited energy range (1-8 GeV) of 2024 test beam, the beam condition was unclear to us.

Energy resolutions of fEMCal

- 2.7% beam momentum spread are deducted. •
- Constant term of resolution gets smaller with • increased beam incident angle.
- consistent with non-uniformities.

(%)

4 deg

15 deg

- With updated calibrations and falloff corrections, nonuniformity of fEMCal prototype improves. It is 2-4% at 4 GeV, which is close to ePIC requirements.
- Absolute light yield of SiPM at FNAL is 2470 pixels/GeV, scaling to SiPMs that will be used for ePIC is 1580 pixels/GeV. It is close to our expectation and it satisfies ePIC requirements.

Backups

