Progress on Noise Effects Study on ePIC Tracking

Mito Funatsu California EIC Consortium Meeting University of California, Los Angeles January 9, 2025

ePIC Detector & Silicon Vertex Tracker Geometry

3 inner barrels ITS3 sensors (MAPS technology) 2 outer barrels

EIC-LAS (Large Area Sensor)* 5 disks (forward & backward) EIC-LAS*

Simulations based on MAPS with 20 μm x 20 μm pixels

*modification to ITS3 sensors with no change to pixel matrix

5 disks (forward & backward)

Noise Implementation: Fake-Hit Rate (FHR)

Noise: an signal in the absence of particle hit

Fake-hit rate: noise hits/event/pixel

ITS3 TDR p.44 (2024):

General requirements for the ITS3 upgrade:
FHR < 2-5 x 10⁻⁷ /event/pixel

NO noise implemented in official simulation

Current Estimation of Noise Hit Count

Sampled fake-hit rate: FHR < 5 x 10⁻⁷ per event per pixel. Fake hits/event/collection: FHR x total pixels

Pixels sizes: 20x20µm²

	Inner Barrel	Outer Barrel	Endcaps
Total pixels	al pixels 8.65E+08		1.18E+10
Fake hits/event	4.33E+02	3.92E+03	5.91E+03

Noise Implementation

Digitization/Hit Reconstruction Procedure

 \rightarrow By identifying a way to generate additional cellID's that are uniformly distributed on the Inner Barrel, we can treat these additional "sim hits" as noise hits

Generating 64-bit CellID's Efficiently and Randomly

Inner Barrels CellID composition: system:8,layer:4,module:12,sensor:2,x:32:-16,y:-16

- 1. Find a valid range for each component
- 2. Generate a random number in the range
- 3. Combine to form a valid cellID

Inner Barrel Layers (L012) Hit Distribution for Single Event

These are hits from a single event, with **3 of the hits from the simulated particle**, and the remainder 433 hits being noise hits.

Analyzing Reconstruction Performance

Efficiency analyzed with/without noise as a function of η and $p_{_{\rm T}}$

Efficiency

Efficiency is the ratio:

of MCParticles with reconstructed tracks

of MCParticles

We also define **matching conditions: checks if the reconstructed tracks match with an MCParticle within:

- ΔΘ (theta) : 0.005 rad
- ΔΦ (phi) : 0.03 rad

Sampled Events

- 1. 1,000 single-muons events
- 2. Craterlake geometry
- 3. 0.5<p<20 GeV/c
- 4. $-4 \le \eta \le 4$

of MCParticles with reconstructed tracks

of muon MCParticles

For this particular event that happened at this pseudorapidity, there was a "random" reconstructed track, not necessarily at this angle, but for this event.

Real-Seeded Efficiency Against Pseudorapidity (η)

Efficiency =

1/9/2025

of MCParticles with reconstructed tracks

of muon MCParticles

Real-Seeded Efficiency Against Transverse Momentum (p_r) Specified Eta Range: -3.6≤η≤3.6

Efficiency =

Efficiency vs. p_T (Real-seeded) Efficiency vs. p_T (Real-seeded) 1.0 **R** 1.0 0.8 0.8 Efficiency 9.0 Efficiency 90 0.4 0.4 0.2 0.2 No noise No noise IB noise IB noise 0.0 0.0 0.0 2.5 5.0 10.0 12.5 15.0 17.5 20.0 7.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 pT (GeV/c) pT (GeV/c) All tracks

12

Next Steps

- 1. Efficiency analysis with noise in outer barrels and endcaps
- 2. Incorporate hit based matching for a more efficient and concrete matching procedure for multiple particle events
- 3. Momentum resolution plots

Backup

Seeding Algorithm

Successful reconstruction of manually inputted cellID's

- **BOECalRecHits BOTrackerRecHits** BackwardMPGDEndcapRecHits EcalBarrelImagingRecHits **EcalBarrelScFiRecHits** EcalEndcapNRecHits EcalEndcapPInsertRecHits EcalEndcapPRecHits FcalFarForward7DCRecHits EcalLumiSpecRecHits event. ForwardMPGDEndcapRecHits ForwardOffMTrackerRecHits ForwardRomanPotRecHits HcalBarrelRecHits HcalEndcapNRecHits HcalEndcapPInsertRecHits HcalFarForwardZDCRecHits **LEHCAL RecHits MPGDBarrelRecHits** OuterMPGDBarrelRecHits SiBarrelTrackerRecHits SiBarrelVertexRecHits SiEndcapTrackerRecHits
- TOFEndcapRecHits
- TOFBarrelRecHit

Description: Reconstructed hit position plot for one single-muon event. Includes additional SVT hits not from collision event.

16

Potential Approach for Finding Endcap CellID Range

Suggestion from DD4hep experts: Directly compute the volume boundaries, then, convert to cell ID's. Then, pick a random pixel in this range.

Discussion with DD4hep: https://github.com/AIDASoft/DD4hep/issues/1335

CellID Study

- Color: applies exclusively to the layer/disk
- Black: applies to all layers/disks in the collection

Collect name	Sys_id (L/D 0,1,2 , 3,4)	layer	module (L 3,4)	sensor	seg_x (L 0,1,2,3,4) [-Φ] or [+Φ]	seg_y/z (L 0,1,2,3,4) [-z] or [+z]	# est. noise hits
IB	31	1,2,4	1-128	1	(0,43) or (65492, 65535) (0,57) or (65478, 65535) (0,146) or (65386, 65535)	(0,6749) or (58786,65535) All layers	433
OB	59, 60	1	1-44, 1-69	1	(0,999) or (3096,4095) All layers	(0, 13049) or (1035526, 1048575) (0,20999) or (1027576,1048575)	3920
Disks	68, 69 70, 77 , 78 , 79	1, 2,3,4	1-36	1			5910

Efficiency = # of MCParticles with reconstructed tracks # of muon MCParticles

Real-Seeded Efficiency Against Transverse Momentum (p_{T}) Without Eta Cut

