Energy-energy correlators for jet production in pp and pA collisions

Jani Penttala

In collaboration with João Barata, Zhongbo Kang and Xoán Mayo López

Based on 2411.11782

University of California, Los Angeles SURGE collaboration

2025 California EIC Consortium Collaboration Meeting

Jets as a tool to study high-energy collisions

Jets: Collimated sprays of hadrons

- Useful probes in studying precision QCD
- Get modified in the nuclear medium
 - Multiple scatterings
 - Quark-gluon plasma

Jets substructure:

- Information from the radiation pattern inside the jet
- Can be measured using e.g. energy-energy correlators
 - Recent measurements: CMS (2402.13864) ALICE (2409.12687)

Energy–energy correlators (EEC)

- Two-point energy correlator
- Particles weighted by their energy
 - \Rightarrow Less sensitive to the nonperturbative IR region
 - One of the first infrared-safe event shapes in QCD Basham, Brown, Ellis, Love (Phys.Rev.Lett. 41 (1978) 1585, Phys.Lett.B 85 (1979) 297-299)

• $e^+ + e^- \rightarrow X$:

$$\frac{\mathrm{d}\Sigma_{e^+e^-}}{\mathrm{d}\cos\chi} = \sum_{i,j} \int \mathrm{d}\sigma \, \frac{E_i E_j}{Q^2} \delta(\cos\theta_{ij} - \cos\chi)$$

e++

Moult, Zhu (1801.02627)

where $Q^2 = (\sum_i E_i)^2$

J. Penttala (UCLA)

• Measure angular distance *R_L* between pairs of particles:

$$R_{L,ij} = \sqrt{\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2} pprox \Delta heta_{ij} \cosh \eta$$

- $\bullet \ \phi = {\rm tranverse \ angle}$
- $\bullet \ \eta = {\rm pseudorapidity}$
- $\theta = 3D$ angle

ALICE (2409.12687)

EEC inside jets

- Relative transverse momentum between the pair:
 - $k_T \sim p_T R_L$
 - $p_T = jet transverse momentum$
- Different regions:
 - $k_T \gg \Lambda_{QCD}$: perturbative
 - Probes jet formation
 - $k_T \sim \Lambda_{QCD}$: nonperturbative
 - Effects from confinement and hadronization

ALICE (2409.12687)

Collinear limit: Factorization into hard and jet functions

$$\frac{\mathrm{d}\Sigma^{\rho\rho}}{\mathrm{d}\rho_{T}\,\mathrm{d}y\,\mathrm{d}R_{L}} = \int_{0}^{1} \mathrm{d}x\,x^{2}\frac{\mathrm{d}J(x,\rho_{T},R_{L})}{\mathrm{d}R_{L}}\cdot H(x,y,\rho_{T})$$

where the hard function is defined as the normalized cross section

$$H = \left(\frac{1}{\sigma_q} \frac{\mathrm{d}\sigma_q}{\mathrm{d}p_T \,\mathrm{d}y}, \frac{1}{\sigma_g} \frac{\mathrm{d}\sigma_g}{\mathrm{d}p_T \,\mathrm{d}y}\right)$$
$$\frac{\mathrm{d}\sigma_c}{\mathrm{d}p_T \,\mathrm{d}y} = \sum_{a,b} f_{a/p}(x_a, \mu) \otimes f_{b/p}(x_b, \mu) \otimes \hat{\sigma}_{a+b\to c}$$

- Independence of the renormalization scale $\boldsymbol{\mu}$
- \Rightarrow Evolution equation for the jet function

$$\frac{\mathrm{d}J(\mu)}{\mathrm{d}\log\mu^2} = -\frac{\alpha_s(\mu)}{4\pi}J(\mu)\cdot\gamma(3)$$

•
$$\gamma(n) = -\int_0^1 \mathrm{d}z \, z^{n-1} \hat{P}(z)$$
 is the anomalous dimension

• \hat{P} = renormalized splitting function (matrix)

Dixon, Moult, Zhu (1905.01310)

• Low momentum region:

Sensitive to extra momentum kick from hadronization

- TMD ansatz: described by the nonperturbative Sudakov term
- Convenient to compute in the coordinate space $(R_L p_T \Leftrightarrow b)$

$$\frac{\mathrm{d}\Sigma^{pp}}{\mathrm{d}p_{T}\,\mathrm{d}y\,\mathrm{d}R_{L}} = R_{L}p_{T}^{2}\int_{0}^{\infty}\mathrm{d}b\,b\,J_{0}(R_{L}p_{T}b)\,j_{\mathsf{np}}(b)\,\widetilde{\Sigma}(b)$$
$$j_{\mathsf{np}}(b) \equiv \exp(-a_{0}b)$$
$$\widetilde{\Sigma}(b) = (1,1)\cdot\left(\frac{\alpha_{s}(Rp_{T})}{\alpha_{s}(\mu_{b_{*}})}\right)^{\frac{\gamma(3)}{\beta_{0}}}\cdot H(p_{T})$$

where R = 0.4 is the jet radius

J. Penttala (UCLA)

Boglione and Simonelli (2007.13674)

pp results

• a_0 fitted to data: CMS: $a_0 = 3.8 \text{ GeV}$, ALICE: $a_0 = 2.5 \text{ GeV}$

- Difference in measurements: CMS inclusive jets, ALICE charged jets
- Can describe both the perturbative and nonperturbative region across a vast range of p_T ! J. Penttala (UCLA) Include LEC January 9 2025 9/12

pA collisions: modifications from the nuclear medium

Onperturbative part:

Modification from multiple scatterings

$$j_{np}(b) = \exp(-a_0 b) \Rightarrow j_{np}(b) = \exp(-a_0 b - a_1 b^2)$$

Perturbative part: modification to the splitting function

$$\frac{\mathrm{d}J^{\mathrm{med}}}{\mathrm{d}R_L} = \frac{\alpha_s(R_L p_T)}{\pi R_L} \int_0^1 \mathrm{d}x \, x(1-x) \mathcal{P}^{\mathrm{vac}}(x) \mathcal{F}_{\mathrm{med}}(p_T, R_L, x)$$

- F_{med} : can be written in terms of Wilson lines
- Described by two parameters:
 - **(**) Jet quenching parameter $\hat{q} \approx 0.02 \,\text{GeV}^2/\text{fm}$ Ru et al. (1907.11808)
 - 2 Medium length $L \approx 3 \, \text{fm}$

Barata et al. (2304.03712)

January 9 2025

Study medium effects with the ratio:

$$R_{\rho \mathsf{Pb}} = \frac{\mathrm{d}\Sigma^{\rho \mathsf{Pb}}}{\mathrm{d}y \,\mathrm{d}p_{\mathcal{T}} \,\mathrm{d}R_L} \Big/ \frac{\mathrm{d}\Sigma^{\rho \rho}}{\mathrm{d}y \,\mathrm{d}p_{\mathcal{T}} \,\mathrm{d}R_L}$$

- Effect of nPDF vanishes in the ratio
- We fix $a_1 = 0.25 \, \text{GeV}^2$
 - \Rightarrow Matches data fit in the NP region
- Including also F_{med}:
 - \Rightarrow Describes the trend in the data for all R_L
- Both nonperturbative and perturbative medium corrections important!

- Energy-energy correlators are promising observables for studying precision QCD
 - Energy weight: reduces the sensitivity on nonperturbative fragmentation
- EEC inside jets: potential to study medium effects
- Nonperturbative physics in the collinear region:

Need to take transverse momentum in hadronization into account

• pA collisions: medium effects for EEC important