

The New Beam Loss Detection Sytem at ESRF

Laura Torino ESLS 2017, 22/11/2017

Beam Loss Detection

Monitor and localize the particle losses around the machine to protect the accelerator from damages, see "hidden" obstacles, and improve the machine parameters

- Fast Losses: Beam losses over (almost) bunch by bunch or turn by turn base
- Slow Losses: Beam losses integrated over time

Beam Loss Detection

Monitor and localize the particle losses around the machine to protect the accelerator from damages, see "hidden" obstacles, and improve the machine parameters

- Current ESRF system is getting obsolete
- Design a new system for EBS
- Commissioning of the new system on ESRF current machine to have it ready for EBS

Current ESRF System

- 64 Beam Loss Detectors
 - $\ \ \square \ \ \mathsf{PMT} + \mathsf{scintillator}$
 - $\hfill\square$ Read out < 1 Hz
- 64 Ionization Chambers

Obsolete, unpractical and quite "old"

Requirements for the new system

- Slow and fast losses
- Compact
- System "off shelf"
- Calibration in-situ

Requirements for the new system

- Slow and fast losses
- Compact
- System "off shelf"
- Calibration in-situ

New BLD System

Off-shelf PMT coupled with a scintillator and commercial electronic to control and read the results

- PMT Hamamatsu H10721-110
 - □ 8 mm active area
 - $\hfill\square$ Powered 5 V
 - $\hfill\square$ 0-1 V gain control
- EJ-200 scintillator rod (100x22mm)
 - Wrapped in reflective foil
- "Light" lead shielding

- PMT Hamamatsu H10721-110
 - □ 8 mm active area
 - $\hfill\square$ Powered 5 V
 - $\hfill\square$ 0-1 V gain control
- EJ-200 scintillator rod (100x22mm)
 - Wrapped in reflective foil
- "Light" lead shielding

- 4 independent 5 V power supplies
- 4 independent gain control channels
- 4 independent read out channels
- 4 independent impedance settings $(50 \,\Omega/1 \,M\Omega)$
- Trigger input
- > 10 MHz readout
- 8 ns ADC sample

BLDs Location

32 ESRF cells \Rightarrow 32 Libera BLM units 4 BLDs per cell \Rightarrow 128 BLDs

Page 7 | ESLS 2017, 22/11/2017 | Laura Torino

BLDs Location

32 ESRF cells \Rightarrow 32 Libera BLM units 4 BLDs per cell \Rightarrow 128 BLDs

Direct comparison with the current BLD system

Page 7 | ESLS 2017, 22/11/2017 | Laura Torino

BLDs Location

Page 7 | ESLS 2017, 22/11/2017 | Laura Torino

Example

Page 8 | ESLS 2017, 22/11/2017 | Laura Torino

In-Situ Calibration

Using a radioactive source (Ce137) it is possible to *relatively* calibrate the PMT-scintillator system directly in the tunnel.

In-Situ Calibration

Using a radioactive source (Ce137) it is possible to *relatively* calibrate the PMT-scintillator system directly in the tunnel.

Synchrotron Radiation Influence - Test

X-rays produced by synchrotron radiation interact with the BLD scintillator and produce unwanted background

Page 10 | ESLS 2017, 22/11/2017 | Laura Torino

Synchrotron Radiation Influence - Evidence

Page 11 | ESLS 2017, 22/11/2017 | Laura Torino

Synchrotron Radiation Influence - Evidence

Page 11 | ESLS 2017, 22/11/2017 | Laura Torino

Synchrotron Radiation Influence - Evidence

Page 11 | ESLS 2017, 22/11/2017 | Laura Torino

Synchrotron Radiation Influence - Solution

Page 12 | ESLS 2017, 22/11/2017 | Laura Torino

- 128 BLDs relatively calibrated
- 128 BLDs installed
- 128 BLDs commissioned
- Software and users application under development

Page 13 | ESLS 2017, 22/11/2017 | Laura Torino

- 128 BLDs relatively calibrated
- 128 BLDs installed
- 128 BLDs commissioned
- Software and users application under development

 $\begin{array}{l} \Rightarrow \mathsf{Slow \ Losses} \\ \Rightarrow \mathsf{Fast \ Losses} \\ \Rightarrow \mathsf{Turn \ by \ Turn \ Losses} \end{array}$

Page 13 | ESLS 2017, 22/11/2017 | Laura Torino

Slow Losses – Comparison

Data acquired during top-up injection

Page 14 | ESLS 2017, 22/11/2017 | Laura Torino

Slow Losses – Device Server

Page 15 | ESLS 2017, 22/11/2017 | Laura Torino

Fast Acquisition – Injection Monitoring

Fast Acquisition – Injection Monitoring

- 128 BLDs and 32 BLMs installed at ESRF
- In-situ calibration performed
- Synchrotron Radiation related problems solved
- Possibility of slow, fast and turn by turn measurements
- Operation software and application (almost) ready

- 128 BLDs and 32 BLMs installed at ESRF
- In-situ calibration performed
- Synchrotron Radiation related problems solved
- Possibility of slow, fast and turn by turn measurements
- Operation software and application (almost) ready

Next Step: Start to store data to have a reference for EBS

Many thanks to K. Scheidt, F. Taoutaou, N. Benoist, JL. Pons

Page 17 | ESLS 2017, 22/11/2017 | Laura Torino

Back-up Slides

Page 18 | ESLS 2017, 22/11/2017 | Laura Torino

Turn by Turn – Booster Phase Shift

 ${\sf Impedance} = 50\,\Omega \quad {\sf Triggered} \quad {\sf Hundreds \ turns \ integration}$

Page 19 | ESLS 2017, 22/11/2017 | Laura Torino

Turn by Turn – Booster Phase Shift

 $\label{eq:mpedance} \mbox{Impedance} = 50\,\Omega \quad \mbox{Triggered} \quad \mbox{Hundreds turns integration}$

Page 19 | ESLS 2017, 22/11/2017 | Laura Torino

Turn by Turn – Booster Phase Shift

Page 19 | ESLS 2017, 22/11/2017 | Laura Torino