Contribution ID: 151 Type: Talk

Enhanced recombination of 124 Xe and the flow-tag of 214 Pb in LUX-ZEPLIN

In this talk I will describe analyses of two of the most notable backgrounds in the recent LUX-ZEPLIN (LZ) dark matter search: 124 Xe double L-shell capture decays and 214 Pb daughters of 222 Rn. First, we observe that 124 Xe double L-shell capture decays have charge yields deviating 30% from standard electronic recoil (ER) backgrounds, resulting in increased overlap with high-mass WIMPs. This effect was expected from the measured charge yields of related decays, indicating that enhanced electron-ion recombination arising from larger ionization densities is responsible. Next, the largest background in the WIMP search comes from 214 Pb decays following 222 Rn emanation into the liquid. To mitigate these events, we have developed methods to control and map the flow of the liquid xenon in LZ. The flow maps are used to derive temporally-evolving volumes –representing 15% of the recent WIMP search exposure –that contain around 60% of 214 Pb beta decays. Finally, I will describe how the flow-tag and enhanced recombination are relevant to calibrations, sidebands, and future dark matter searches.

Author: AMARASINGHE, Chami **Presenter:** AMARASINGHE, Chami