
The GAMERA toolkit

More than a kaiju

Carlo Romoli (MPI-K)



21.03.2019 PyGAMMA 2019 - Heidelberg 1

What is GAMERA?

• A Japanese Kaiju

• A toolkit to model evolution of 
relativistic particles and their 
emission in various astrophysical 
scenarios

Original creator and developer Dr. Joachim 
Hahn
Hahn J., ICRC2015

https://pos.sissa.it/236/917/pdf


21.03.2019 PyGAMMA 2019 - Heidelberg 2

Where to find GAMERA?

• New Github repository
– Previous one in Joachim’s personal space 
– Moved to something more maintainable after Joachim 

left science
– New organization to host the repository:

• libgamera (documentation being moved to other location)
• For more info you can ask Mischa or me (with the task of 

maintaining this nice code)

https://github.com/libgamera


21.03.2019 PyGAMMA 2019 - Heidelberg 3

How is GAMERA structured?

• GAMERA is a set of C++ libraries wrapped in 
python using Swig
– Efficient computing underneath
– Nice user friendliness in the usage

AstroParticles
Radiation Utils GAPPA

GAmera Python PAckage



21.03.2019 PyGAMMA 2019 - Heidelberg 4

What does the PARTICLES class do?

• Solves the time evolution of a generic 
distribution of particles (electrons or protons)

Time evolution
of differential particle
count at energy E Particle energy

Cooling term: 
(dE/dt)

Particle escape
term

Source term



21.03.2019 PyGAMMA 2019 - Heidelberg 5

How does it do it?

• 2 cases:

– General with all possible 
time dependencies

– Time independent losses 
without escape of particles

Fully numerical solution
donor-cell advection 
algorithm

Semi-analytical solution from
Atoyan&Aharonian, 1999
• with constant losses (method 1)
• without losses (method 2)

Losses
Electrons: synchrotron, inverse Compton 
scattering (in different flavours), 
bremsstrahlung, adiabatic losses
Protons: escape only

http://adsabs.harvard.edu/abs/1999MNRAS.302..253A


21.03.2019 PyGAMMA 2019 - Heidelberg 6

What does the RADIATION class do?

• Solves the radiation emission of a given particle 
distribution for different mechanisms

• Several emission mechanisms implemented for 
both protons and leptons
– Radiation output computed even though the 

PARTICLES class does not take the process into 
account in the evolution



21.03.2019 PyGAMMA 2019 - Heidelberg 7

Radiation from electrons

• Synchrotron -> Computed when we add a B 
field (Blumenthal&Gould1970, 
Ghisellini1988)

• Inverse Compton scattering -> Computed in 
presence of a target photon field
– Isotropic (Blumenthal&Gould1970)
– Anisotropic case (Moskalenko&Strong2000, 

Aharonian&Atoyan1981)

• Bremsstrahlung -> As soon as we add an 
ambient density (Baring1999)

http://adsabs.harvard.edu/abs/1970RvMP...42..237B
http://adsabs.harvard.edu/abs/1988ApJ...334L...5G
http://adsabs.harvard.edu/abs/1970RvMP...42..237B
http://iopscience.iop.org/article/10.1086/308138/meta
http://adsabs.harvard.edu/abs/1981Ap%26SS..79..321A
http://adsabs.harvard.edu/abs/1999ApJ...513..311B


21.03.2019 PyGAMMA 2019 - Heidelberg 8

Radiation from protons

• gamma ray emission 
from pp interactions due 
to neutral pion decay
– using analytical 

parametrization 
developed 
in Kafexhiu2014

http://adsabs.harvard.edu/abs/2014PhRvD..90l3014K


21.03.2019 PyGAMMA 2019 - Heidelberg 9

What does the ASTRO class do?

• Holds astrophysical models for source 
modelling and population syntheses
– Galactic structures

– Magnetic field models

– VHE-source progenitor model functions

– VHE-source dynamical models (for SNRs)



21.03.2019 PyGAMMA 2019 - Heidelberg 10

What does the UTILS class do?

• Miscellanea of useful functions and values

– Constants, distributions of random numbers, 
integrations, interpolations (2d_interp dependency)..

• Use of the ‘gnu scientific library’ (gsl) for the 
calculations

– More efficient implementation



21.03.2019 PyGAMMA 2019 - Heidelberg 11

Some more technical details…

• Interface between GAMERA 
and Python (or I wouldn't be at 
a PyGAMMA workshop)

• Interface done with SWIG
– Good interaction between the 

lists and numpy arrays and the 
1D-2D vectors used in the C++ 
code

%module gappa

%{

#include "../include/Radiation.h"

#include "../include/Particles.h"

#include "../include/Utils.h"

#include "../include/Astro.h"

#include "../include/2D_interp/interp2d_spline.h"

#include "../include/2D_interp/interp2d.h"

%}

%include "typemaps.i"

%include "std_vector.i"

%include "std_string.i"

%include "std_iostream.i"

namespace std

{

%template(OneDVector) vector<double>;

%template(TwoDVector) vector< vector<double> >;

}

%include "../include/Radiation.h"

%include "../include/Particles.h"

%include "../include/Utils.h"

%include "../include/Astro.h"

%include "../include/2D_interp/interp2d_spline.h"

%include "../include/2D_interp/interp2d.h"

.i file for the swig interface



21.03.2019 PyGAMMA 2019 - Heidelberg 12

Python interface
Import the gappa module in a python script

import sys

sys.path.append(<gamera>/lib/)

import gappa as gp

Initial particle distribution must be an array of 
tuple (E,dN/dE) passed as np.array
power_law =

np.array(zip(ene,dnde_values))

Classes initializated in standard 
way:
fr = gp.Radiation()

fp = gp.Particles()

Pass the particle distribution to the 
class
fr.SetElectrons(power_law)



21.03.2019 PyGAMMA 2019 - Heidelberg 13

…and practical examples

• Particles class
fp = gp.Particles()

[...]

fp.SetBField(b_field)

fp.SetAmbientDensity(density)

fp.SetRadius(radius)

fp.AddThermalTargetPhotons(t_cmb,edens_cmb,bins)

fp.SetCustomInjectionSpectrum(power_law)

tcool_tot = 
np.array(fp.GetCoolingTimeScale(energy_in_erg_pl))

fp.SetAge(age)

fp.CalculateElectronSpectrum()

sp = np.array(fp.GetParticleSpectrum())

sed = np.array(fp.GetParticleSED())



21.03.2019 PyGAMMA 2019 - Heidelberg 14

…and practical examples (pt. 2)

• Radiation class
fr = gp.Radiation()

[...]

fr.SetAmbientDensity(ambient_density)

fr.SetBField(b_field)

fr.AddThermalTargetPhotons(t_1,edens_1)

fr.SetDistance(distance)

fr.SetElectrons(elLogPsp)

e = np.logspace(-6,15,200) * gp.eV_to_erg 

fr.CalculateDifferentialPhotonSpectrum(e)

total_sed = np.array(fr.GetTotalSED()) 



21.03.2019 PyGAMMA 2019 - Heidelberg 15

Development plans

• Some new implementations in the code
– New version of anisotropic inverse Compton (by Mischa, added last 

week in the repository...documentation will come soon)
– Implementation of γγ absorption (Carlo, will be added very soon)
– Fixing some old pull requests... ionization losses of protons (...)

• Of course...bug fixing and improvement of the documentation
– Beside descriptive documentation and tutorials also have a more 

detailed doxygen documentation of the various functions and 
functionalities



21.03.2019 PyGAMMA 2019 - Heidelberg 16

Conclusions

• GAMERA is a powerful tool for modelling of 
relativistic particles in astrophysical 
environments

• Aim to keep it alive and maintained

• Use it
– libgamera

https://github.com/libgamera/GAMERA


21.03.2019 PyGAMMA 2019 - Heidelberg 17

...one last thing...

• There is another code that is somehow similar 
to GAMERA (and some of you might know it)

NAIMA

– You can find it here

Developed by Dr. Victor Zabalza
Zabalza V., ICRC2015

naima

Python package for 
computation of non-
thermal radiation from 
relativistic particle 
populations and MCMC 
fitting to observed spectra

https://naima.readthedocs.io/en/latest/
http://adsabs.harvard.edu/abs/2015arXiv150903319Z
https://naima.readthedocs.io/en/latest/


21.03.2019 PyGAMMA 2019 - Heidelberg 18

One slide (or 2) about NAIMA

• Fully python based
– you can install it with pip or conda
– heavy use of analytical approximations to speed up
– use of astropy tools (e.g. for quantities and units)

• Fit of spectral data points
– Uses MCMC approach through the package emcee

• Lacks particle evolution features (snapshot spectra, no particle 
cooling)

• A bit more rigid with the available particle distributions

http://dfm.io/emcee/current/


21.03.2019 PyGAMMA 2019 - Heidelberg 19

so..2 slides

• The nicest feature 
in NAIMA is the 
fitting of data

• Use of a Bayesian 
approach to 
retrieve the original 
parent population

MCMC fitting
Posterior 
distributions



21.03.2019 PyGAMMA 2019 - Heidelberg 20

Thank you for your 
attention!



21.03.2019 PyGAMMA 2019 - Heidelberg 21

backup slides

In case of emergency



21.03.2019 PyGAMMA 2019 - Heidelberg 22

Donor-cell algorithm

From J.Hahn slides

Here:
• q = N
• x = Energy

t

t+dt

Flux (u*q) into cell i

Flux out of cell i

time

energy

Flux = flow speed 
x fluid density

Here:
• Flow speed = 

cooling rate
• Fluid density = 

particle density

Discontinuity treated 
with slope delimiters 
to avoid numerical 
oscillations


