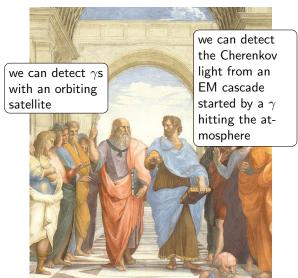
TOWARDS MULTI-INSTRUMENT AND REPRODUCIBLE GAMMA-RAY ANALYSIS

C. Nigro* 1

*contact:cosimo.nigro@desy.de

¹DESY Zeuthen

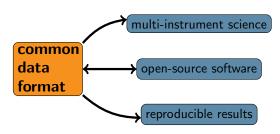
18-22 March 2019, MPI for Nuclear Physics, Heidelberg


Cosimo Nigro 1 / 23

Introduction

Cosimo Nigro 2 / 23

The importance of a common language / format


> Different philosophies, same language.

Cosimo Nigro 3 / 23

The importance of a common language / format

- Neither data format nor software shared by gamma-ray instruments;
- > current perspective, two setbacks:
 - combination of data from different experiments needs custom expansions of proprietary analysis software;
 - → release of public legacy data needs release of analysis software;
- > forward perspective, a challenge:
 - operation of CTA as an observatory poses VHE community the problem of producing public data and analysis tools.

Cosimo Nigro 4 / 23

A common gamma-ray format

- Community effort already started at Data formats for gamma-ray astronomy forum http://gamma-astro-data-formats.readthedocs.io;
- which level to unify?

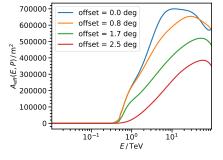
IACT data level	description	reduction factor
DL0	raw output of DAQ	
DL1	calibrated quantities (charge, arrival time)	1 - 0.2
DL2	reconstructed shower parameters	10^{-1}
DL3	reduced γ ray candidates + IRFs	10^{-2}
DL4	science data products: spectra, LC, skymaps	10^{-3}
DL5	observatory data: surveys, catalogues	10^{-3} - 10^{-5}

- space-borne instrument data (e.g. Fermi-LAT) can be embedded in this scheme;
- > files stored in FITS format (a 30-year standard in astronomy).

Cosimo Nigro 5 / 23

DL3 = Event Lists + IRF

Cosimo Nigro

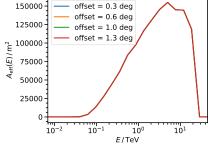

fv: Summary of run_05029747_DL3.fits in /home/cosimo/work/magic_dl3_joint-crab/						
File Edit	Tools Help					
Index	Extension	Туре	Dimension		Vi	iew
0	Primary	Image	0	Header	Ima	age
= 1	EVENTS	Binary	5 cols X 6310 rows	Header	Hist	Plot
2	GTI	Binary	2 cols X 1 rows	Header	Hist	Plot
3	EFFECTIVE AREA	Binary	5 cols X 1 rows	Header	Hist	Plot
4	ENERGY DISPERSION	Binary	7 cols X 1 rows	Header	Hist	Plot

fv: Binary Table of run_05029747_DL3.fits[1] in/home/cosimo/work/magic_dl3_joint-cr...

File Edi	t Tools Help		7		
	■ EVENT_ID	■ TIME	■ RA	■ DEC	■ ENERGY
Select	1 K	1D	1E	1E	1E
■ All		s	deg	deg	TeV
Invert	Modify	Modify	Modify	Modify	Modify
1	42	3,337788495267E+08	4.442146E+02	2,344914E+01	8,397394E-02
2	67	3,337788496132E+08	4.435247E+02	2,272579E+01	1.059693E-01
3	80	3,337788496690E+08	4.437696E+02	2,245101E+01	1.973350E-01
4	116	3,337788497779E+08	4.437152E+02	2,198512E+01	1.002094E+00
5	179	3,337788499826E+08	4.436414E+02	2,204132E+01	1.031663E-01

DL3 = Event Lists + IRF

Instrument Response Function (IRF) quantifies performances, transform estimated (\hat{E}, \hat{P}) to true (E, P) observables.


- Full-enclosure IRF:
 - account for the dependency of the response across the FoV;
 - → current format: P = offset from camera center.
- Components:
 - → point spread function;
 - → energy dispersion;
 - → effective area.

Analysis of any source in the Field of View.

Cosimo Nigro 7 / 23

DL3 = Event Lists + IRF

Instrument Response Function (IRF) quantifies performances, transform estimated (\hat{E}, \hat{P}) to true (E, P) observables.

- > Point-like IRF:
 - account for the response at the same position (offset) as the observations;
 - → P dependency removed.
- Components:
 - no point spread function;
 - → energy dispersion;
 - → effective area.
- > Analysis of source at fixed position (offset) in the FoV.

Cosimo Nigro 8 / 23

The joint-crab effort arXiv: 1903.06621

Cosimo Nigro 9 / 23

Objectives

- Using this preliminary DL3 format, we perform the first fully-reproducible multi-instrument gamma-ray analysis;
- relying on open-source software: gammapy;
- combining data from Fermi-LAT, and the four existing IACTs, to produce a joint fit of the Crab Nebula spectrum;
- online material (data and scripts):
 https://github.com/open-gamma-ray-astro/joint-crab/;
- > DISCLAIMER: the purpose of this project is to show a method, not to provide a new measurement of the Crab Nebula spectrum.

Cosimo Nigro 10 / 23

Datasets

- > Fermi-LAT data freely available, IRF computed with the science tools and made DL3-compliant with gammapy;
- small samples of DL3 data released by IACT collaboration for this project, FACT¹ and H.E.S.S.² datasets already available to the public;

Dataset	time	obs. mode	$E_{\min} \ / \ TeV$	$E_{ m max}$ / TeV
Fermi-LAT	\sim 7 years	sky survey	0.03	2
MAGIC	40 mins	pointing	0.08	30
VERITAS	40 mins	pointing	0.15	30
FACT	10 hours	pointing	0.40	30
H.E.S.S.	3 hours	pointing	0.50	30

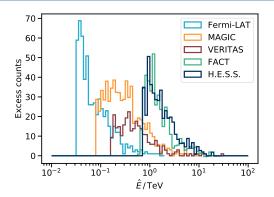
> notebook to explore data: 1_data.ipynb.

Cosimo Nigro 11 / 23

¹https://fact-project.org/data/

²https://www.mpi-hd.mpg.de/hfm/HESS/pages/dl3-dr1/

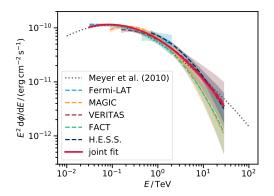
Likelihood Analysis


- Energy spectrum $\frac{d\phi}{dE}(E; \mathbf{\Lambda})$ estimated with a binned maximum likelihood method, $n_{\hat{F}}$ bins in estimated energy;
- data of the likelihood are counts in a signal (N_{on}) and background $(N_{\rm off})$ sky regions, Poissonly distributed:

$$\mathcal{L}(\boldsymbol{\Lambda}|\boldsymbol{D}) = \prod_{i=1}^{n_{\text{instr}}} \underbrace{\mathcal{L}_i(\boldsymbol{\Lambda}|\{N_{\text{on},ijk}, N_{\text{off},ijk}\}_{j=1,...,n_{\text{runs}};k=1,...,n_{\hat{E}})}_{\prod_{j=1}^{n_{\text{runs}}} \prod_{k=1}^{n_{\hat{E}}} \text{Pois}(g_{ijk}(\boldsymbol{\Lambda}) + b_{ijk};N_{\text{on},ijk}) \times \text{Pois}(b_{ijk}/\alpha_{ij};N_{\text{off},ijk})}_{},$$

- g_{ijk} : $\frac{\mathrm{d}\phi}{\mathrm{d}E}$ folded with IRF; b_{ijk} : nuisance parameter, fixed at $\partial \mathcal{L}/\partial b_{ijk} = 0$;
- mathematical formulation in Appendix A of Piron et al. 2001;
- > a joint point-like analysis is performed, Fermi-LAT and H.E.S.S. IRFs are reduced to a point-like format.

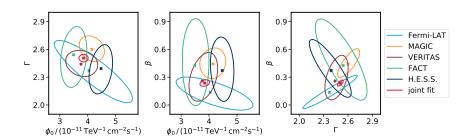
Cosimo Nigro


Likelihood analysis

- > Source counts, $N_{\rm ex} = N_{\rm on} \alpha N_{\rm off}$, per instrument;
 - \rightarrow α : ON to OFF exposure ratios;
- > ON: circular sky regions containing the source;
- OFF: circular or ring region (free of VHE emitters) estimating the background photons to be subtracted;
- > see Berge et al. 2007.

mo Nigro 13 /

Likelihood analysis



> Fitted spectra for log-parabolic assumed spectral model:

$$\frac{\mathrm{d}\phi}{\mathrm{d}E} = \phi_0 \left(\frac{E}{E_0}\right)^{-\Gamma - \beta \log_{10} \left(\frac{E}{E_0}\right)}.$$

Cosimo Nigro 14 / 23

Likelihood analysis

- Likelihood contours with 68% probability content for the log-parabola parameters (individual instruments and joint fit);
- > notebook to explore results: 2_results.ipynb.

Cosimo Nigro 15 / 23

Approaches to systematics evaluation

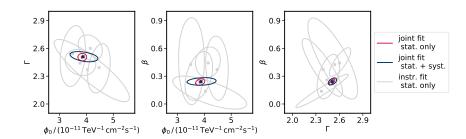
- Identify main sources and study how their variation distort a spectral measurement (Aharonian et al. 2006, Aleksic et al. 2016):
 - consider impact on flux normalization, spectral index and energy scale estimation:
 - \rightarrow results in an additional uncertainty term, $\phi_0 \pm \sigma_{\phi_0, \mathrm{stat.}} \pm \sigma_{\phi_0, \mathrm{syst.}}$
 - Incorporate uncertainties in the likelihood (as Dickinson et al. 2013 for background subtraction uncertainty):
 - \rightarrow results in a global stat + syst. uncertainty term, $\phi_0 \pm \sigma_{\phi_0, {\rm stat. + syst.}}$

Cosimo Nigro 16 / 23

Modified Likelihood

- > Example of how to include the systematic uncertainties on the energy scale of the different instruments (following Dembinski et al. 2017):
 - ightarrow constant energy bias per instrument $z_i = \frac{\tilde{E} E}{E} = \frac{\tilde{E}}{E} 1$;
 - \rightarrow modified assumed spectrum \tilde{E} :

$$\frac{\mathrm{d}\tilde{\phi}}{\mathrm{d}\tilde{E}} = \frac{\mathrm{d}\phi}{\mathrm{d}E}\frac{\mathrm{d}E}{\mathrm{d}\tilde{E}} = \phi_0 \left(\frac{E/(1+z_i)}{E_0}\right)^{-\Gamma+\beta\log_{10}\left(\frac{E/(1+z_i)}{E_0}\right)} \left(\frac{1}{1+z_i}\right)$$


> global likelihood function extended with the distributions of the z_i :

$$\mathcal{L}(\boldsymbol{\Lambda}|\boldsymbol{\mathcal{D}}) = \prod_{i=1}^{n_{ ext{instr}}} \mathcal{L}_i(\boldsymbol{\Lambda}|\mathcal{D}_i) \, imes \, \mathcal{N}(z_i;0,\delta_i^2);$$

- \rightarrow z_i fitted with the other spectral parameters;
- \rightarrow constrained with δ_i = systematic uncertainty on the energy scale estimated by each instrument.

Cosimo Nigro 17 / 23

Modified likelihood

- Likelihood contours with 68% probability content incorporating stat. and syst. uncertainties;
- > notebook to reproduce fit with systematics: 3_systematics.ipynb.

Cosimo Nigro 18 / 23

Using a theoretical model

- An analytical function is not the only possibility to perform a likelihood fit, any theoretical model can be used for $\frac{d\phi}{dE}$.
- > Typically theoretical models are not plugged in the likelihood estimation but fitted to spectral points:
 - → often not unfolded (i.e. in E_{est}), and limited in cases where the energy dispersion plays a major role.
- Releasing the results of the data reduction (i.e. ON + OFF distributions and IRF) would allow successive likelihood fit with any arbitrary theoretical model;
- > example with naima radiative model: 4_naima.ipynb.

Cosimo Nigro 19 / 23

How is reproducibility achieved?

- > Short-term:
 - all the code will be publicly available in GitHub https://github.com/open-gamma-ray-astro/joint-crab;
 - \rightarrow the size of the data is \sim MB, can be provided along with the code;
 - → packages managed via anaconda environment.
- Medium-term:
 - it may happen that the conda virtual environment is not enough to guarantee reproducibility (software not anymore mantained), a joint-crab Docker container is provided.
- > Long-term:
 - on-line material available on Zenodo, DOI: 10.5281/zenodo.2381863.

Cosimo Nigro 20 / 23

Wrap-up and prospects

Cosimo Nigro 21 / 23

Status

- With the current DL3 data only joint point-like analysis can be performed (among IACTs, only H.E.S.S. released full-enclosure IRF for this project);
- see Gernot, Lars and Lea's talk for an update of the DL3 converter status in VERITAS, H.E.S.S. and MAGIC;
- the format itself needs to be extended: expressing the P dependency as a radial offset is not enough for experiments with non-symmetric camera acceptances (e.g. MAGIC).

Cosimo Nigro 22 / 23

An open gamma-ray science

- What can our community achieve?
- An approach to gamma-ray science, summarized by three essential concepts: common data format, open-source software and reproducible results, the first being the cornerstone of the last two.
- With the joint-crab example we illustrate this approach is already within our reach!
- A key asset for future gamma-ray instruments like CTA that will be operated as an open observatory and share its data with a wide astronomical community.

Cosimo Nigro 23 / 23