

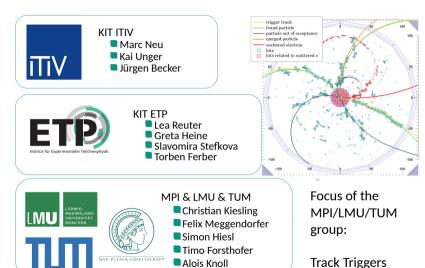
Upgrade of the Neural Network Track Trigger for Belle II

Simon Hiesl Christian Kiesling Kai Unger Sebastian Skambraks Timo Forsthofer

Master student LMU

07.03.2024

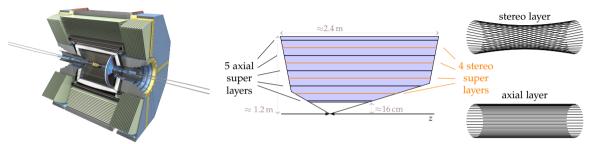
Members of the Belle II Trigger Group



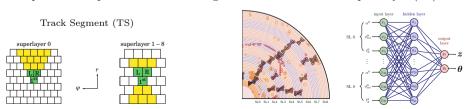
The Central Drift Chamber (CDC) of Belle II

The Belle II Detector

The CDC



• TS = Wire pattern compatible with a crossing track \rightarrow 2336 TS in 9 Super Layer (SL)

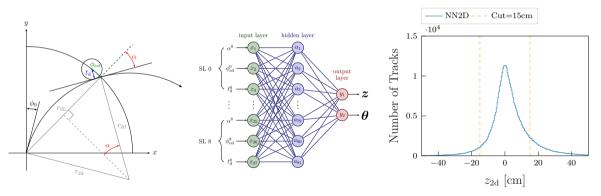


The L1 Neural Network Trigger

Belle II

z-Vertex and polar emission angle prediction with neural network:

- 2D track + Stereo TS $\implies z + \theta$ prediction
- One hidden layer with 81 nodes



 \implies z-cut of ± 15 cm used

Latency budget of only $5\mu s$ for the complete L1 trigger \rightarrow Only 300ns for the neural computation

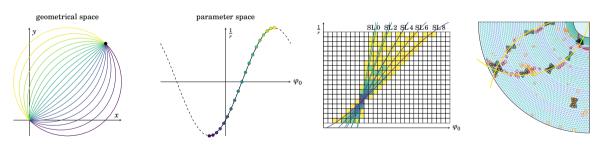
Preprocessing of the Network Input: Track Finding

Belle II

Which TS belong to a real track?

TS selection using a two-dimensional Hough transformation:

- Axial hit in CDC (TS) gets transformed to a curve in parameter (Hough) space
- Intersection point yields the track parameters ϕ and $r_{\rm 2d} \propto p_{\rm T}$



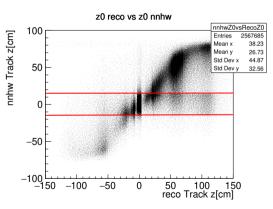
 \implies 2D track candidate

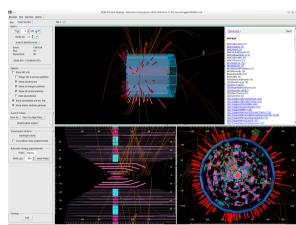
The Neuro Trigger has been running since January 2021 years with remarkable success.

Problems with the L1 Neural Network Trigger

Belle II

- \bullet "Feed-Down" effect: Background tracks \to Vertex tracks
- Many Fake-Tracks with high Background



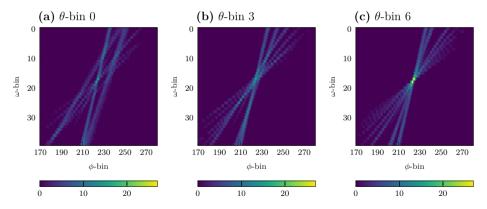


Extension to 3D: The 3DFinder

New curve parameter: Polar angle $\theta \implies$ 3D-Hough space

• 9 bins in $\theta \in [19,140]^{\circ}$, 384 bins in $\phi \in [0,360]^{\circ}$, 40 bins in $\omega \propto q \cdot p_{\mathrm{T}}^{-1}$, $p_{\mathrm{T}} \in [0.25,10]\,\mathrm{GeV}/c$

Vertex assumption: The track originates from (x, y, z) = (0, 0, 0) (IP)



 \implies Intersection point yields ω , ϕ and θ

Clustering Algorithm in 3 Dimensions

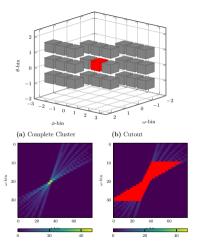
Original algorithm: DBSCAN \rightarrow Difficult to implement on an FPGA (non-deterministic length \implies latency not fixed)

Update: Fixed Clustering

Three steps, repeated iterations times:

- Step 1: Global maximum search on Hough space
- Step 2: A fixed shape is put around the maximum
 - ► The weights in this shape are added up (total weight)
 - ► If total weight ≥ mintotalweight and peak weight ≥ minpeakweight the cluster is saved
 - ▶ All hits (TS) are extracted and have to pass two TS cuts
- Step 3: Cells around the global maximum are set to zero ("Butterfly-Shape" cutout)

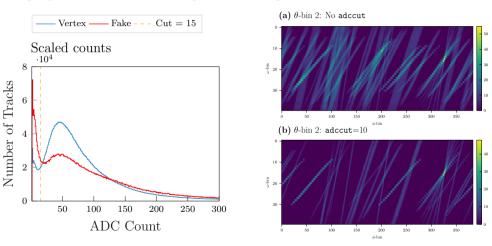
Fixed shape:



Real Data Analysis

Belle II

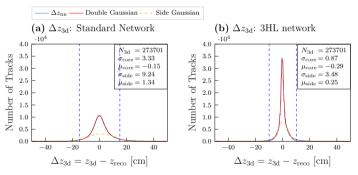
- Very high backgrounds were observed in the last experiment (due to high luminosity)
- The Hough spaces contain a lot of background track segments



⇒ Reduction of noise using a cut on the ADC count

FPGA Implementation

- ullet Present implementation \to 2DF inder and Neuro Trigger on separate FPGA boards (2 UT3)
- \bullet New implementation \to 3DFinder and Neuro Trigger on the same (new) FPGA board (1 UT4)
- The available latency is increased to 700ns
- Neural networks with three or four hidden layers are possible



 \implies Cut reduction from ± 15 cm to less than ± 10 cm possible due to better resolution (see presentation by Timo Forsthofer)

Efficiency on Real Single Track Events

- Hit to cluster relation:
 - ▶ All hits in a cluster are considered
 - ▶ The largest weight distribution for each SL is used
- Cut on the number of axial and stereo SL hits (for background reduction)

Efficiency for single track events: Cut at $\pm 10 \,\mathrm{cm}$

adccut	Efficiency 3D	Efficiency 2D
No Count	94.1%	94.0%
10 Counts	96.3%	95.3%

Fake-Rate for all found tracks:

adccut	Fake-Rate 3D	Fake-Rate 2D
No Count 10 Counts	13.1% 5.8%	31.6% $13.5%$

But: Neural network not trained for 3D candidates at the moment (see presentation by Timo Forsthofer)

Conclusions and Next Steps

Using the 3DF inder has multiple advantages over the present 2D model with additional stereo TS selection:

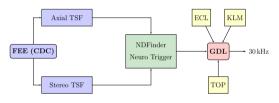
- Automatic suppression of tracks outside the interaction region (candidates implicitly originate from the IP)
- ullet Better track segment selection \Longrightarrow Better resolution
- ullet Implementation of track finding and network computation on the same FPGA board \Longrightarrow Deep neural networks
- Smaller Fake-Rate
- Higher efficiency

The next steps are:

- Implementation of the 3D Hough method on UT4 FPGA boards (Kai Unger)
- Improved neural network architecture (Timo Forsthofer)
- Retraining with unbiased data from the new data taking, which just has started

Backup

(a) New Pipeline



(b) Current Pipeline

