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Metamaterials – A Path to Higher Frequency Axion Haloscopes

Determination of Wire-Array Metamaterial Parameters

Study of the Plasma Frequency Dependence on the Unit Cell

The Sikivie Axion Haloscope1
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q The conversion power   !!→# ∝ #!##$ $$%&'
q With gagg the coupling, B magnetic field strength, and V, C, Q

the microwave cavity volume, form factor and quality factor.

q The relationship between cavity size and frequency 
has restricted traditional haloscopes to ≈ 0.5 - 5 GHz.

The Plasma Axion Haloscope2

q Lawson et al. have proposed the use of a wire-array 
metamaterial to replace a conventional cavity2

q The plasma frequency np is a function of the unit cell, 
rather than the overall size of the resonator
q Wire-array metamaterials have been extensively studied 

theoretically, with some limited experimental validation3-5

q As an example, for a simple square lattice of wire 
radius r0, and spacing  a , the plasma frequency is
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q For e.g.  a = 5 mm and r0 = 25 µ,  np = 10.4 GHz

Tuning the Resonator by Modifying the Unit Cell

Non-volume conserving

Volume conserving

q Changing the plane spacing yields a large dynamic range 
in frequency, but may be impractical for a haloscope.

q Shifting alternate planes in the parallel or perpendicular 
direction yields a smaller but useful dynamic range for a 
haloscope, and can be easily implemented mechanically.

q Simulations are in good agreement with data, at the few 
percent level (Kowitt et al., manuscript in preparation).

Data: Wooten (2023)
Theory: Belov (2003)

q In a Drude model, with a complex permittivity   ! " = !! " − %!!! " :
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q The fitted transmission function, S21 is very sensitive to the metamaterial 
parameters  np [GHz], the loss term  G [GHz], and the array width  d [mm].

q Extensive measurements were performed  at Berkeley of rectangular 
lattices assembled by stacking planes of gold-on-tungsten wires.

q For these measurements, the wire radius and spacing in the plane were  
r0 = 25 µ,  a = 5.88 mm; the plane separation for most tests was b = 8 mm.

q The metamaterial parameters were investigated as a function of N = 5-40.

S21 (Transmission) Measurements of Metamaterial Parameters 
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Metamaterial Parameters – Experiment and Theory

q Plasmonic behavior is already well 
established for N ∼ 5 planes.

q The semianalytic theory of Belov4 is     
in excellent agreement with the 
asymptotic np , at the ∼0.1% level .

q The asymptotic loss term G∼ 0.038 
implies a quality factor Q = np / G∼220, 
in good agreement with the theoretical 
value of 260.

q While Q is low, the radius & spacing 
can be changed to maintain the same 
np , but maximizing Q.6 For r0∼1 mm, 
a∼10 mm, the theoretical quality 
factor is projected to be ∼4000, and 
thus at cryogenic temperatures, > 104.

q For a description of the experiments 
and modeling, see Ref. 7.

N > 30  (Asymptotic)N = 20

Summary and Future Work
q Wire-array metamaterials are a promising route to reach higher frequencies in the dark matter axion 

search, as motivated by recent calculations of the mass of the post-inflation axion.8

q Fixed-frequency prototypes validate the expected room temperature quality factor 9 (see below); 
tunable prototypes are being designed and built.

q Optimal coupling of the resonator with the quantum preamplifier is under active study.

q A complete discussion of metamaterial resonators and the ALPHA proposal has recently appeared.10

q See talk of Andrea Gallo Rosso (Saturday, April 1, 10:15 a.m., PAB-1-425)
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