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WIMP detection and neutrino fog
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Direct detection searches reach increasingly
stringent exclusion bounds, but after the next
generation of detectors they will be limited by
coherent neutrino scattering.



Semiconductor-based direct detection

SuperCDMS

SuperCDMS collaboration, e.g. PRL 120 061802

DAMIC collaboration, e.g. PRL 125 241803

Diamond: Kurinsky et al, Phys. Rev. D 99, 123005
Diamond: Canonica et al, J. Low Temp. Phys. 199 606-613
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Directional detection in diamond

Directional information allows discrimination

of neutrinos and WIMPs
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Directional detection in diamond

Directional information allows discrimination
of neutrinos and WIMPs
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A diamond detector would consist of an array
of lab-grown, instrumented diamond chips



Directional detection in diamond

In diamond or another crystalline target, a WIMP event would induce

Directional information allows discrimination . : . ,
many secondary recoils, leaving a “track” of crystal damage

of neutrinos and WIMPs
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Directional detection in diamond

In diamond or another crystalline target, a WIMP event would induce

Directional information allows discrimination . : . ,
many secondary recoils, leaving a “track” of crystal damage

of neutrinos and WIMPs
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After an event is detected in a chip, that chip would be
removed; the damage track located; and the direction read out.

A diamond detector would consist of an aray
of lab-grown, instrumented diamond chips



Directional detection in diamond

STEP I: Event detection and localization at the mm scale using charge, phonon, or photon
collection. The event time is recorded to determine the absolute orientation of the specific
mme-scale chip in which the event occurred.

STEP II: Damage track localization at the micron scale using optical-diffraction limited
techniques utilizing quantum defects in the solid.

STEP III: Mapping damage tracks at the nanoscale using either superresolution optical

methods or x-ray microscopy. The meter-scale detector continues operation during steps Il
and III.




Nitrogen vacancy centers as quantum crystal-damage sensors
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pin-1 point defects in diamond
pin-dependent intersystem crossing allows optical initialization and readout

pin precession frequencies sensitive to strain

Simplified ground state spin Hamiltonian

H ~ (D

M.)S3
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Nitrogen vacancy centers as quantum crystal-damage sensors

Spin-1 point defects in diamond
Spin-dependent intersystem crossing allows optical initialization and readout
Spin precession frequencies sensitive to strain

TA i =
1
LC:J E Simplified ground state spin Hamiltonian
0 N
| o )
Bt g (A H ~ (D + M.)S?+~B,S.




Nitrogen vacancy centers as quantum crystal-damage sensors

Spin-1 point defects in diamond
Spin-dependent intersystem crossing allows optical initialization and readout
Spin precession frequencies sensitive to strain

fluorescence

NV-diamond
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Strain-CPMG: spin-1 enhanced strain sensing
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e Phys. Rev. Applied 17 (2022) 2, 024041 [2108.00304 quant-ph]



Strain-CPMG results: sensitivity
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Strain-CPMG results: fast, widefield strain imaging
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Directional detection in diamond

STEP I: Event detection and localization at the mm scale using charge, phonon, or photon
collection. The event time is recorded to determine the absolute orientation of the specific
mme-scale chip in which the event occurred.

STEP II: Damage track localization at the micron scale using optical-diffraction limited
techniques utilizing quantum defects in the solid.

STEP III: Mapping damage tracks at the nanoscale using either superresolution optical

methods or x-ray microscopy. The meter-scale detector continues operation during steps Il
and III.
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Nanoscale track mapping with X-ray microscopy

Argonne &

NATIONAL LABORATORY

Hard X-ray Nanoprobe

100 nm SOI
Si (004)

Holt et al., Annu. Rev. Mat. Res. 48:183-211



X-ray microscopy performance

Sub-micron strain features are resolved . . .
_ _ T 5 Three dimensional reconstruction
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Towards detecting injected signals Sandia
ationa
Laboratories
Deterministic single-ion implantation: }ionbeam/cb %

Collect charges released by ion implantation between two gold pads

Implanter
Viias | Carbon Charge
O— | ion .
Detection : 1 collection
circuit | | pads
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Titze et al, Nano Lett. 22, 3212-3218
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