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Sub-GeV particles are abundantly 
produced in supernovae 

 
Strong novel constraints obtained recently


(Coupling to photons, charged leptons etc.)
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Today: neutrino couplings



Particles with a neutrino coupling
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Many BSM particles have coupling to neutrinos: 


• gauge bosons from , … 
symmetries


• Scalar and pseudo scalars, e.g. Majorons 
related to the neutrino mass generation

U(1)Lμ−Lτ
U(1)B−L

Interesting for a huge number of reasons:


• Neutrinos might be the portal to the dark sector (see e.g. Kelly et al. 2020)


• Can be related to many puzzles, e.g.  (Caputo, Raffelt and Vitagliano 2021), Hubble 
tension (Escudero and Witte 2019)


• Neutrino secret interactions UV completion (Snowmass reports Argüelles et al. 
2203.10811 and Barryman et al. 2203.01955)


• Effect on the supernova explosion: they could help the explosion by depositing energy 
back in the mantle

gμ − 2



Particles with a neutrino coupling
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ν

ν
ϕ

To simplify things, we will assume an extremely simple case: (pseudo)scalars 
coupling diagonally to all neutrino flavors


h.c.ℒint = −
g
2

ϕψT
ν σ2ψν+

Many BSM particles have coupling to neutrinos: 


• gauge bosons from , … 
symmetries


• Scalar and pseudo scalars, e.g. Majorons 
related to the neutrino mass generation

U(1)Lμ−Lτ
U(1)B−L



Particles with a neutrino coupling
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ν

ν
ϕ

What we say applies also to the other cases

To simplify things, we will assume an extremely simple case: (pseudo)scalars 
coupling diagonally to all neutrino flavors


h.c.ℒint = −
g
2

ϕψT
ν σ2ψν+

Many BSM particles have coupling to neutrinos: 


• gauge bosons from , … 
symmetries


• Scalar and pseudo scalars, e.g. Majorons 
related to the neutrino mass generation

U(1)Lμ−Lτ
U(1)B−L



Take home messages
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• Particle physics: best bounds on 
new feebly interacting particles 
for “heavy” bosons from decay to 
neutrinos


• Astrophysics: rule-out decaying 
bosons as supernova explosions 
catalyzers


• Cosmology: strongly 
constraining DM mediators
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Stellar collapse
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Energetic of the neutrino signal
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The expected energy, flux, and duration of the neutrino signal can be evaluated 
roughly:







 

Ebinding ≃
3
5

GM2

R
= 1.60 × 1053 erg ( M

M⊙ )
2

( 10 km
R )

M ≃ 1.4M⊙, R = 15 km → T =
2
3

⟨Ekin⟩ ≃ 17 MeV

tdiff ≃ R2/λ ≃ 𝒪(1s)

We can get a feeling without simulations of the signal



Energetic of the neutrino signal
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The expected energy, flux, and duration of the neutrino signal can be evaluated 
roughly:







 

Ebinding ≃
3
5

GM2

R
= 1.60 × 1053 erg ( M

M⊙ )
2

( 10 km
R )

M ≃ 1.4M⊙, R = 15 km → T =
2
3

⟨Ekin⟩ ≃ 17 MeV

tdiff ≃ R2/λ ≃ 𝒪(1s)

Therefore:  for each neutrino species, with energies 
 and a signal of 

0.5 × 1053 erg
𝒪(10 MeV) 𝒪(1 − 10 s)

We can get a feeling without simulations of the signal



SN 1987A Neutrino Observations
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• Several neutrino experiments were able to see events

• Cherenkov detectors: Irvine-Michigan-Brookhaven (IMB) and Kamiokande II

• Scintillator detectors: Baksan Scintillator Underground Telescope (BUST), Liquid 

Scintillation Detector (LSD)
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Cherenkov detectors
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The idea of Cherenkov detectors is 
extremely simple:


• Take a huge tank of water


• Neutrinos travel in the detector, 
until they interact with a nucleus 
(or electrons)


• Inverse Beta Decay (IBD), 
namely 


• Charged particles emits 
Cherenkov radiation, since it is 
faster than the speed of light in 
the medium

ν̄e + p → e+ + n
σ ∼ G2

FE2



SN 1987A Neutrino Observations
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2002: Koshiba 
2015: Kajita  

(was a fresh PhD in 1987!)



Energy loss bounds from supernovae
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The existence of a feebly interacting particle can affect the duration of the neutrino 
signal of a supernova

Neutrino

Feebly interacting particle

PNS

Neutrinosphere

Mantle

As new particles are produced in the 
core, they take away energy from the 
cooling porto-neutron star


Less energy available to neutrinos!

The environment is so dense neutrinos 
are trapped and cannot escape freely, 
until they reach the neutrinosphere



Energy loss bounds from supernovae
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Raffelt (1994)

• The emission of new particles affect the 
cooling time of the protoneutron star


• Several papers in the 1980s (1D 
simulations with an energy sink) found 
the relative cooling time (right figure, 
axion-nucleon coupling).  
Observable: duration of the neutrino 
signal at IMB and KII


• All simulations on a common footing: 
new particle emission should not exceed 

, or in terms of the 
total energy
ϵa = 1019erg g−1s−1

Lϕ ≲ Lν(1s) = 3 × 1052 erg s−1

Computed at  and T = 30 MeV ρ = 3 × 1014 g cm−3



Is it the best bound we can get?
If we assume the free-streaming bound value for the coupling, Lϕ = Lν

Majoron produced in the core, 
 

then decay back to neutrinos 
 
Neutrinos escape at the neutrino 
sphere  so 

Eϕ ∼ μν ∼ 100 MeV

Eν ∼ 10 MeV

Therefore 
nϕ decay

ν

nstandard
ν

∼
Estandard

ν

Eϕ decay
ν

But the cross section in the detector grows like σ ∼ G2
FE2

We would have seen 10 times more events compared to the ones we saw!

Neutrino sphere

PNS

Mantle

Standard neutrinos

Neutrinos from ϕϕ
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Not strongly dependent on the Supernova model

Brand new!
New bounds from decay to neutrinos

Fiorillo, Raffelt, Vitagliano, 2022
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Not strongly dependent on the Supernova model

New bounds from decay to neutrinos
Fiorillo, Raffelt, Vitagliano, 2022

Brand new!

10°2 10°1 1 10 102

Majoron mass, m¡ [MeV]

10°10

10°9

10°8

10°7

10°6
M

aj
or

on
co

up
lin

g,
g ¡

m
¡

[M
eV

]
Schematic BBN
bounds

SN 1987A energy loss

No high-E ∫

Decay within neutrinosphere
Allowed regions possible?

λ ≃ RNS
Think twice before 
using modified 
luminosity 
criterion for 
trapping

(See also Caputo, Raffelt, 
Vitagliano, JCAP 08 (2022) 
08, 045)
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Not strongly dependent on the Supernova model

Fiorillo, Raffelt, Vitagliano, 2022

New bounds from decay to neutrinos Brand new!
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Maximum allowed 
luminosity 1/100 
of cooling bounds

λ ≃ RNS
Think twice before 
using modified 
luminosity 
criterion for 
trapping

(See also Caputo, Raffelt, 
Vitagliano, JCAP 08 (2022) 
08, 045)
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• Majoron-like bosons copiously produced in supernova cores

• They have 100-MeV range energies and decay back to neutrinos

• An additional high-energy neutrino source from supernovae—and we did 

not see it

Results:

• Particle physics: best bounds on new feeble interacting particles for 

“heavy” bosons decaying to neutrinos

• Astrophysics: rule-out decaying bosons as supernova explosions 

catalyzers

• Cosmology: strongly constraining DM mediators



Thank you
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Deleptonization and cooling

The core heats up from the outside…

Garching 1D models SFHo-18.8 evolved with the
Prometheus Vertex code with six-species neutrino transport

…as the core deleptonizes… …and after the core heats up, muons can 
be produced



Neutrino cross sections
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At low energies

At large energies

Xνe
=16F* Xν̄e

=16N*



SN 1987A Neutrino Observations
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• First IMB event occurred at 7:35:41.374 
Universal Time on 23 February 1987, 
corresponding to 3:35 am local time on 
a Monday very early morning


• SN 1987A signal consisted of 8 events 
and in addition 15 muons were 
recorded, a total of 23 triggers, 
amounting to 23 × 35 ms = 0.8 s dead 
time, or 13% of the SN signal duration 
of 6 s


• At Kamiokande II 4 muons were found 

in the 20 s interval preceding the SN 
1987A burst, 12 events (with a gap)



Grand unified neutrino spectrum at Earth
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Vitagliano, Tamborra, Raffelt, Rev.Mod.Phys. 92 (2020) 45006



Grand unified neutrino spectrum at Earth
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Vitagliano, Tamborra, Raffelt, Rev.Mod.Phys. 92 (2020) 45006

Tables available to produce your own GUNS plot on arXiv & supplemental material

What we expected

LOTS of neutrinos


