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The detector

Astroparticle Physics 108 (2019) 1-23

https://www.sciencedirect.com/science/article/pii/S0927650518300914
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Data Acquisition
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0
w(t)dt

➡Two rolling integrals are evaluated on the summed acquired 
and digitized waveform


➡Events in the region X are discarded 


➡Events in the region C are “prescaled” by the physics trigger, 
so only 1 events over 100 are stored, to reduce triggers from 
39Ar decays

Astroparticle Physics 108 (2019) 1-23

https://www.sciencedirect.com/science/article/pii/S0927650518300914
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Dark matter Experiment using Argon 
Pulse-shape discrimination 

Eur. Phys. J. C 80, 303 (2020)

ILAr(t) =
Rs

τs
e−t/τs +

1 − Rs − Rt

τrec(1 + t/τrec)2
+

Rt

τt
e−t/τt

Rs = 0.23τs = 8.2ns
Rt = 0.71τt = 1445ns

τrec = 175.5ns

➡Modeled scintillation pulse shape due to 39Ar  decays, 
convoluted with the detector response 


➡ Included the LAr intermediate component and delayed TPB 
emission. 


➡The high difference between triplet and singlet state determines a 
powerful pulse shape discrimination

β

https://link.springer.com/article/10.1140/epjc/s10052-021-09514-w
https://epjc.epj.org/articles/epjc/abs/2020/04/10052_2020_Article_7789/10052_2020_Article_7789.html
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➡  Comparison in terms of the leakage probability performed between 
four different Pulse Shape Discriminators (PSD) estimators


Eur. Phys. J. C 81,823 (2021)

Fprompt =
∫ 150ns

−28ns
PE(t)dt

∫ 1.6μs
−28ns

PE(t)dt

➡At about 18 keVee  and a nuclear recoil acceptance of 50 % a leakage 
probability of about 10-10 is reached with the nSc-based algorithm

[
[

Charge 


definitions

PSD 


algorithms


https://link.springer.com/article/10.1140/epjc/s10052-021-09514-w
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➡Most precise measurement of the specific activity 
of atmospheric 39Ar up to date


S39Ar =
Nsingle + Npile−up

mLArTlivetime

mLAr = (3269 ± 24)kgmLAr = (3269 ± 96)kg
First This work!

➡Updated value for the liquid argon mass

➡Analysis performed on 167 days
Tlivetime =

➡Energy dependent detector resolution applied 
according to a Gaussian,


PE = p0 + p1 ⋅ E + p2 ⋅ E2

σ(PE) = p3 ⋅ PE + p4 ⋅ PE2

ArXiv: 2302.14639

Npile−up = Ndouble + Ntriple + NERB,39Ar + NhFp,39Ar

Tlivetime = Trun −
NDCcut

∑
i=1

δti − NLLcut ⋅ δtcut − Nphys ⋅ (δtcut − δtint)

39Ar specific activity measurement

δtcut = 32μs δti ≤ 32μs δtint = 10μs

https://arxiv.org/abs/2302.14639


8

➡Both Bayesian and Frequentist fit performed 


➡Modeled the low Fprompt energy spectrum with the 
39Ar single and double pile-up events as well as the 
other electron recoil background sources 


Nsingle =
nfit,single ⋅ apresc

ϵfit,single ⋅ b
Ndouble =

nfit,double ⋅ apresc

ϵfit,double ⋅ b

apresc = 100

ϵfit,single, ϵfit,double =
b = 20

➡Prescaling from DTM

➡Bin Width

➡Selection cut efficiencies

S39Ar = (0.964 ± 0.001(stat) ± 0.024(syst))Bq/kgAr

ArXiv: 2302.14639

➡Other pile-up contribution evaluated assuming 
Poissonian statistics

39Ar specific activity measurement

https://arxiv.org/abs/2302.14639


Backgrounds
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Phys. Rev. D 100, 072009 (2019)
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Americium-Beryllium calibration run

C. Rethermeier Ph.D. thesis

➡Electron recoil background fully modeled up to 10 MeV 


➡Measured 42Ar/42K activity = 40.4 ± 5.9µBq/kg 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.072009
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.072009
https://curve.carleton.ca/6ae6fba7-c083-4198-a9a0-055bafcc33ea


➡ Scintillation in condensed argon induced by alphas from 210Po can be rejected thanks to 
new pyrene-coated flow guides


➡ Installation of external cooling system, to prevent argon condensation on flow guides
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Hardware upgrades: pyrene coating

JINST 16 P12029

https://iopscience.iop.org/article/10.1088/1748-0221/16/12/P12029
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.072009


➡Additional Alpha decays background 
consistent with metallic dust particulates 
ranging from 1 um - 50 um in diameter 


➡Could have entered the inner vessel during 
the purging with LN2, after the resurfacing of 
the inner surface 


➡Reduction of dust background by extraction 
and filtration of LAr
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Hardware upgrades: pyrene coating



➡Last WIMP search on 231 days live days

➡Low background level in the ROI thanks to the fiducial cuts 

and the PSD

➡Most stringent exclusion limit in argon above 20 GeV/c2

➡Upcoming reanalysis based on the Profile Likelihood Ratio, in 

order to gain back acceptance and sensitivity
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WIMP search


Phys. Rev. D 100, 022004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.022004


➡The results from 2019 analysis were reinterpreted in terms of a 
Non relativistic effective field theory (NREFT)
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Constrains on NREFT interactions…

O1 = 1χ1N

O3 = i ⃗SN ⋅ ( ⃗q
mN

× ⃗v⊥ )
O5 = i ⃗Sχ ⋅ ( ⃗q

mN
× ⃗v⊥ )

O8 = ⃗Sχ ⋅ ⃗v⊥ O11 = i ⃗Sχ ⋅
⃗q

mN

IV σn
i = − σp

i σn
i = − 0.7σp

i
σn

i = σp
iIS

O1 = 1χ1N

Phys. Rev. D 102, 082001 (2020)                

XP

σp =
(cp

i μp)2

π

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.082001


G1 stream            
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… and  with non-standard halo
➡GAIA and Sloan Digital Sky Survey recently observed inflating clumps and 
streams around our Galaxy

Gaia SausagePhys. Rev. D 102, 082001 (2020)                

fDM( ⃗v ) = (1 − ηsub)f gal
SHM( ⃗v ) + ηsub f gal

sub( ⃗v )

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.082001
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Multi-scatter search
➡Dark matter (DM) candidates above σ𝛘-n ≅  10-25 cm2 and m𝛘≳ 
1012 GeV can reach underground detectors 

➡Expected multiple scatterings along a collinear track in DEAP 
inner vessel

➡Set exclusion limits within 90 % C.L.  for Planck scale masses 
for two composite dark matter models

Phys. Rev. Lett. 128, 011801 (2022)

https://link.aps.org/doi/10.1103/PhysRevLett.128.011801
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Take home
➡Most stringent exclusion limit for high mass WIMPs in 
liquid argon

➡World leading PSD!

➡Re-analysis of the WIMP results with NREFT and 
non-standard galactic halo


➡Unique sensitivity to heavy, multi-scattering dark 
matter candidates up to Planck Scale masses


➡Precise measurements on the specific activity of 
atmospheric argon


➡WIMP search on the open data with Profile 
likelihood ratio analysis: upcoming!


➡WIMP search on blind data: ongoing!


➡Detector upgrades in progress, stay tuned!



UNIVERSITY OF CALIFORNIA LOS ANGELES - DARK MATTER 2023

Back-up
Dr. Michela Lai  

on behalf of 

DEAP-3600 Collaboration



18

PSD algorithms



➡LAr density known to 0.5%, thanks to the monitoring of the temperature and pressure


➡Need to evaluate the inner vessel radius and height


➡Radius measured before filling and then corrected for the inner vessel temperature 
dependent contraction after cool-down,

19

Precise measurement of the LAr target mass

➡Height evaluated according to the distribution of the light, considering


➡The reflection of UV light at the Gas-Liquid interface


➡The TPB coated surface fraction of the PMT immersed in the liquid phase


➡Result validated by comparing data/simulation for different interface levels


➡Cross-checked by comparing the reconstructed vertical positions of 39Ar decays 
in data and simulations for different interface levels


➡Need to consider the presence of bubbles


➡Worst case scenario considered: if whole heat entering the vessel causes bubbles, 
6.3 kg of argon goes in bubbles

RLAr = (845.6 ± 0.9)mm

HLAr = (550 ± 10)mm
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Pile-up evaluation

R39Ar =
Ndouble

2Tlivetimeδtint

RhFp = (270 ± 3)HzRERB = (10.5 ± 0.6)Hz

Npile−up = Ndouble + Ntriple + NERB,39Ar + NhFp,39Ar
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Thermally produced in a secluded sector, where DM is a 
degenerate state of N particles,


These DM particles can reach Planck scale masses.
χi + SM ↔ χi+1 + SM χN → SM + SM

Primordial black holes 
( ) can produce 
heavy dark matter candidates 
( ) by Hawking 
evaporation. 

M ⪅ 5 × 108g

mDM ⪆ 109GeV

Ultra High energy cosmic rays,  above   
can result from the decay of very heavy dark matter 
particles, produced by oscillations of the inflaton, a scalar 
massive field ( ), or of moduli

E ≈ 5 × 1010GeV

m ≈ 1013GeV

J. High Energ. Phys. 2019, 1 (2019).

Phys. Rev. D 59, 123006 (1999).

P.R.L. 123, 191801 (2019)

Inflational gravitational production, in quantum field 
theories in a curved spacetime, of dark matter up to 
Hubble inflation scale and beyond that, with higher spin 
dark matter.

arXiv:1808.08236

https://link.springer.com/article/10.1007/JHEP08(2019)001#citeas
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.123.191801
https://arxiv.org/abs/1808.08236
https://arxiv.org/abs/1808.08236
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Dark matter velocity distribution are affected by the scatterings 
before reaching the underground detector, depending on the 
scattering cross-section σi,χ

80 km

Crust

Mantle

Core

DEAP

Phys.Rev.D 97 (2018) 12, 123013

Nscatt = ∑
i

niσi,χLi αscatt ≈
mi

mχ

d < Eχ >
dt

= − ∑
i

ni(r) < Erec >i σi,χ(v)v

Heavy candidates can reach underground detector. Still, a high cross-section is 
required to compensate for the low incoming flux
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Dark matter (DM) candidates above σ𝛘-n ≅  10-25 cm2 and 
m𝛘≳ 1012 GeV loose a negligible amount of energy in the 
scatterings with the Earth nuclei and can reach 
underground detectors designed for WIMP searches.


Nscatt = σAr,χnLArR

R = 85cm nLAr = 2.1 ⋅ 1022cm−3

N = σχ−T ⋅ 1.8 ⋅ 1024cm−2

αscatt ≈
40GeV

1018GeV
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Both Fprompt and Npeaks decrease as the cross-section increases




25Selection cuts in Npeaks applied only up to 10 MeV, the highest observable energy at which the variable was validated
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Npeaks = 2

Below 10 MeV, any single scatter event is removed by asking Npeaks > 1

  Still, more than one background event can happen in the same acquisition window: this is a pile-up event. 

Phys. Rev. D 100, 072009 (2019)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.072009
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Npeaks = 2

Below 10 MeV, any single scatter event is removed by asking Npeaks > 1

  Still, more than one background event can happen in the same acquisition window: this is a pile-up event. 

Phys. Rev. D 100, 072009 (2019)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.072009
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Npeaks = 2

Below 10 MeV, any single scatter event is removed by asking Npeaks > 1

  Still, more than one background event can happen in the same acquisition window: this is a pile-up event. 

Phys. Rev. D 100, 072009 (2019)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.072009
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Muon flux is about 17 
muons per day, at 
SNOLAB


Removal of any event 
within [-10, 90]us from 
the muon veto trigger

Above 10 MeV the number of pile-up is negligible, while the dominant 
background are muon event entering the inner vessel.

Phys. Rev. D 73, 053004 (2006)
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No event was found in all the ROIs! 

Exclusion limits set within 90 % C.L. for two 
composite dark matter model


μs = T∫ d3v∫ dA
ρχ

mχ
|v | f( ⃗v )ϵ( ⃗v , σT,χ, mχ)
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μs = T∫ d3v∫ dA
ρχ

mχ
|v | f( ⃗v )ϵ( ⃗v , σT,χ, mχ)

Above 10 MeV: 


No calibration available 


simulations at very high cross-section candidates could 
not be performed due to computational limits.


Exclusion limit extrapolated  assuming a conservative 
acceptance of 35 % in ROI4 , up to 


:  highest cross-section which could be simulated
σmax
nχσmax

nχ × ( PEROI4
Max

PEsim
90 )

No event was found in all the ROIs! 

Exclusion limits set within 90 % C.L. for two 
composite dark matter model
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dσTχ

dER
=

dσnχ

dER
|FT(q) |2

Results interpreted according to two theoretical models.


Model 1: dark matter candidate opaque to the nucleus, so 
the scattering cross-section at q=0 corresponds to the 
geometric size of the DM


This can be used to set limits on strongly interacting, 
composite dark matter candidates.


Interpolation on the flux scaling on the mass
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dσTχ

dER
=

dσnχ

dER
|FT(q) |2

Results interpreted according to two theoretical models.


Model 1: dark matter candidate opaque to the nucleus, so 
the scattering cross-section at q=0 corresponds to the 
geometric size of the DM


This can be used to set limits on strongly interacting, 
composite dark matter candidates.


Interpolation on the flux scaling on the mass
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dσTχ

dER
=

dσnχ

dER
|FT(q) |2

Results interpreted according to two theoretical models.


Model 1: dark matter candidate opaque to the nucleus, so 
the scattering cross-section at q=0 corresponds to the 
geometric size of the DM


This can be used to set limits on strongly interacting, 
composite dark matter candidates.


90 % of the expected DM signals falls below 1 MeVee
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dσTχ

dER
=

dσnχ

dER
|FT(q) |2

Results interpreted according to two theoretical models.


Model 1: dark matter candidate opaque to the nucleus, so 
the scattering cross-section at q=0 corresponds to the 
geometric size of the DM


This can be used to set limits on strongly interacting, 
composite dark matter candidates.


Lowest simulated cross-section that could be excluded 
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Model 2: at such high masses, this scaling is expected for 
nuclear dark matter models, with a ND nucleons,  each 
with mass mD and radius rD, resulting in a total mass 

 and radius .


Specifically, to keep the s-wave approximation, it must 
be


For dark nuclei RD >> 1 fm we can find potentials 
resulting in , 


mχ = NDmD RD = rDN1/3
D

|Fχ(q) |2 ≈ 1

dσTχ

dER
= N2

D
dσnD

dER
|FT(q) |2 A4 |Fχ(q) |2

σTχ < σgeo

dσTχ

dER
= N2

D
dσnD

dER
|FT(q) |2 A4
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The unblinding is performed for each single ROI. 


The dataset in detail: 

Start: November 4, 2016 

End: March 8, 2020


Excluded data:

(3  3)us/trigger for signal falling in two events

9 days to test the selection cuts

6 days from the muon coincidence sideband

Total : (813   8) days


Two low level cuts applied

< 5 % PE must be in the brightest channel, acceptance of 87 %

< 5% PE must be in PMTs in gaseous argon, acceptance of 99 %


In all the ROIs the background level is 0.05 ± 0.03. 


±

±
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B. Broerman PhD thesis

arXiv: 2203.06508v1

JHEP 11 (2022) 079

arXiv: 2301.05183

Phys. Rev. D 105, 023012

More ground-based experiments 
are now investigating their 

sensitivity to ultra-heavy dark 
matter candidates

Snowmass 2021

https://qspace.library.queensu.ca/handle/1974/29884?show=full
https://inspirehep.net/files/65b637fd3e91aa2f64db8ec3efd3d459
https://inspirehep.net/files/65b637fd3e91aa2f64db8ec3efd3d459

