

Background Determination for the LUX-ZEPLIN Experiment

Amy Cottle University of Oxford UCLA Dark Matter 2023

LZ Collaboration 36 institutions: ~250 scientists, engineers, and technical staff

Other LZ talks @ UCLA: 1) WIMP results; 2) Ultra heavy DM; 3) MIGDAL

https://lz.lbl.gov/

@lzdarkmatter

b^S Institute for Basic Science

The Backgrounds Problem

determining how difficult it is to actually find a needle in a haystack.

WIMP sensitivities of current experiments

O(1) events/tonne/year

Typical particle detector on the surface

O(10¹²) events/tonne/year

How can we mitigate backgrounds?

- Discrimination built into design
- Control & cleanliness in construction
- Assessment & reduction in analysis

Designing a Low Background Experiment

- LZ hosted underground in Davis Cavern @ SURF $\rightarrow \sim 10^6$ muon flux reduction
- Built with radiopure materials, selected based on ~2000 radioassays [EPJC, Vol 80: 1044 (2020)]
- Tri-detector system: Skin & Outer Detector around TPC to tag external γ -rays and neutrons

Designing a Low Background Experiment

• S2/S1 ratio \rightarrow discrimination between WIMP (NR) & β -particle or γ -ray (ER) events • Self-shielding xenon + 3D position reconstruction \rightarrow background-light fiducial volume

First Science Run (SR1)

- - 335 events remaining \rightarrow what are these events?

• First, world-leading WIMP results achieved with just 60 live days [arXiv:2207.03764] • Developed cuts with high background rejection, maintaining high signal acceptance

Building a Background Model

1) Particle & Detector Modelling

- **GEANT4-based simulation** framework with bespoke features
- Used in sensitivity studies

Astropart. Phys. 2020.102480

- Radon emanates from detector materials into the xenon
- Non-uniform position distribution due to xenon flow and charged ion movement
- "Naked" ²¹⁴Pb β decays are the main WIMP background \rightarrow cannot be directly tagged
 - O(MeV) ²¹⁸Po & ²¹⁴Po α signals used to bound ²¹⁴Pb rate & infer its position distribution

Radon

- Cosmogenic activation \rightarrow decaying xenon isotope & ³⁷Ar contributions during SR1
- ³⁷Ar a significant WIMP search background ($\tau_{1/2} = 35$ days; monoenergetic 2.8 keV ER)
 - Estimated using ACTIVIA & exposure of the xenon during transport [PRD 105, 082004 (2022)]
 - Fit in data decaying + flat background consistent with data (p-value = 0.43)
- Xenon isotope rates enhanced by neutron activation; measured via energy spectrum fits

Activation Backgrounds

Accidental Coincidences

- Unrelated S1s & S2s can accidentally combine to produce single scatter events
- Rate: population of definite accidental events with drift time >1 ms
- Distribution: fake events constructed from lone S1 & S2 pulse waveforms
- Analysis cuts developed to combat observed pulse/event pathologies
 - >99.5% efficiency in removing accidentals
 - SR1 WIMP search counts: 1.2 ± 0.3

10

Neutrons

Accidentals

70 80

- OD Gd-loaded scintillator high thermal neutron capture cross-section
 - Measured OD neutron tagging efficiency of $88.5 \pm 0.7\%$
- Likelihood analysis of sideband of events passing all WIMP search cuts except OD anti-coincidence
 - Constraint in sideband of 0^{+0.8} events
 - Constraint on SR1 WIMP search neutron background of 0^{+0.2} events

11

Background Model Expectations

Total expected NR counts in SR1 WIMP search: 0.14 Total expected **ER** counts for SR1 WIMP search: **273** + [0, 288] from ³⁷Ar

Events in the WIMP Search

Background Model Fit

- No visible change in pre- & post-fit total BG contours → we predicted our backgrounds well!

• Background PDFs for fit created with energy deposit + detector response simulations

Background Model Fit

Source	Expected Events	Fit Result
214pi		1 It Itesuit
²¹⁴ Pb	164 ± 35	-
212 Pb	18 ± 5	-
85 Kr	32 ± 5	-
Det. ER	1.4 ± 0.4	-
β decays + Det. ER	215 ± 36	222 ± 16
$\nu \ { m ER}$	27.1 ± 1.6	27.2 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.1 ± 2.4	15.2 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
^{37}Ar	[0, 288]	$52.5\substack{+9.6 \\ -8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total	_	333 ± 17

Best-fit number of zero WIMP events for all masses examined

Conclusions

- Successful background model built for SR1 underpinning WIMP search result
- Model extends beyond the WIMP search region of interest to other energy ranges
- Results seen today, and more, can be found in new dedicated paper: <u>arXiv:2211.17120</u>

Constructing a Low Background Experiment

1. Underground Location

• LZ hosted in Davis Cavern @ SURF $\rightarrow \sim 10^6$ muon flux reduction

2. Radiopure Material Selection

- Based on ~2000 assays with 13 HPGe detectors, ICP-MS, neutron activation analysis
- 3. Cleanliness Control

pre-scrub

Events After Cuts

Selection description	Events after sel
All triggers	1.1×10^8
Analysis time hold-offs	6.0×10^7
Single scatter	1.0×10^7
Region-of-interest	1.8×10^5
Analysis cuts for accidentals	3.1×10^4
Fiducial volume	416
OD and Skin vetoes	335

80

Fiducial Volume Cut

- Vertical cut: 2.2 < Z < 132.8 cm to avoid electrode & surface backgrounds
- Radial cut: R<68.8 cm
 - Partial charge extraction at wall
 - Small S2s -> worse XY reconstruction
 -> possible leakage radially inwards

Radon Position Distribution

• Radon non-uniform due to slow mixing & thermodynamics

- Positively charged progeny drift towards the cathode
 - Simulations model this for ²¹⁴Pb to obtain its distribution

ER Background Fitting

Pre-DD Calibrations

 214 Pb Rate: 3.05 ± 0.12 µBq/kg

Post-DD Calibrations

²¹⁴Pb Rate: $3.10 \pm 0.10 \mu Bq/kg$

Isolated S1s

PMT dark count pile-up

Events in gas phase

Cherenkov light in PMTs or PTFE

Fluorescence of PTFE

Light leaks from outside TPC

Charge-insensitive regions near walls

Charge-insensitive regions below cathode

Sources of Isolated Pulses

Electrons

CO SALALLE

Isolated S2s

Events in gas phase

Events in liquid above gate grid

Electron emission from grids

Sub-S1-threshold ER events

Delayed electrons after S2s

Radioactivity from gate and cathode grids

Accidentals Verification

- - Several checks confirmed the independence of the S1 & S2 variables in UDT data

• Unphysical Drift Time (UDT) events: S1 & S2 > one max. drift time apart must be uncorrelated

• Isolated S1 and S2 were combined at the waveform level to form events to probe cut acceptances - A good agreement with UDT data was found in several dimensions (pulse size, drift time, etc.)

Veto Detector Responses

- Skin & OD response and inter-detector timings calibrated
 - OD optical calibration system
 - External γ-ray & neutron sources
 (e.g. ²²Na; DD, AmLi, ²⁵²Cf)
- ¹²⁷Xe Skin tagging efficiency of
 78 ± 5% based on K-shell analysis
- OD tagging efficiency of TPC-interacting neutrons of 88.5 ± 0.7% (AmLi calibrations)
 - TPC-OD coincidence window: 1200 µs; threshold equivalent to ~200 keV

Neutrons in the OD

Real LZ AmLi calibration neutron event

- Neutron capture time on Gd: 30 μs
- Neutron can capture on Gd or H
- Gd produces 4-5 γ-rays totaling ~8 MeV
- H produces a 2.2 MeV γ-ray

Neutron Multiple Scatter Events

- Look for multiple scatter events with neutron captures in the OD (>400 phd)
- 10 neutrons found -> suggests none present in the WIMP search data

Neutrino Backgrounds (and Signal)

10

 10^{1}

 10^{-1}

 10^{-3}

 10^{-2}

Rate [(tonne year keV)⁻¹]

- Solar neutrinos can produce both ERs from v-e scatters and NRs from coherent v-nucleus scatters (CEvNS)
- Rates are predicted from external experimental and theoretical work
- v-e scatters produce a flat spectrum
- The coherent scattering of solar neutrinos with Xe nuclei (CEvNS) is an irreducible background
 - In SR1, B8 CEvNS gave 0.15 events
 - Mostly excluded via S2 threshold
 - LZ will measure this signal

