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(SQUIDs, atomic magnetometers) (atom and optical
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Rapid technological advancements

Time to find gravitational waves, dark matter, maybe even dark
energy!
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Licht Boson Detection

(1) Local Source

Null result directly relevant. Premium to produce and detect

(2) Cosmic Source
Ultra-light dark matter (<< | eV)
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Bosonic Dark Matter

Photons Dark Bosons
Early Universe: Today:
Misalighment Mechanism Random Field
V
.
a
E = Ejcos (wt — wz)
Dete.ct Photon by. a(t) ~ ag cos (mqt) Correlation length
measuring time varying ~ 1/(ma v)
field Spatially uniform, oscillating field

Coherence Time
m2a2 ~ ppus ~ 1/(ma v?)
~ | s (MHz/m,)

Detect effects of oscillating dark matter field

Resonance possible. Q ~ 106 (set by v ~ 10-3)
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Dark Matter =— a = ag cos (mgt)
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Light Bosonic Fields

Radiative corrections?

Maybe no symmetries - just weak couplings?

Naturalness?
Out of fashion
Higgs ~ 2012

Cosmological Constant ~ 4000 BC

How to search?
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Dark Oscillating Field

Change Fundamental Constants

a/c effect, narrow bandwidth around dark matter mass
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Axion Dark Matter

Spontaneously Broken Global Symmetry
Goldstone Boson: [ O @ FE

fa om
a
In the presence of a magnetic field: V X B = | B
ot fa
oscillating axion oscillating electric

field field
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Dark Photon Dark Matter

Many theories/vacua have additional, decoupled sectors, new U(1)’s

Natural coupling (dim. 4 operator): L D ¢FF’

mass basis:
1 1
L=~ (FuF" + Fl, F"™) + om3, AL A" —edpy (A +e A))

photon with small mass and suppressed couplings to all charged particles

Charge sees small
oscillating electric
field

oscillating L’ field
(dark matter)



Dark Matter Radio Station

oscillating dark
matter field shield

A

Tunable resonant circuit
(a radio)
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CASPEr: Axion Effects on Nuclear Spin
General Axions OCD Axion

Neutron in Neutron in
Axion Wind QCD Axion Dark Matter

Measure Spin
Rotation,

. detect Axion
U

Hyx D ivz.gN

Ja QCD axion induces electric dipole moment
for neutron and proton

(8faa NW“%N)

Spin rotates about

dark matter velocity Dipole moment

along nuclear spin
Effective time varying

magnetic field Oscillating dipole: d ~ 3 x 107°* cos (mgt) ecm

Bery N 10~1% cos (mgt) T Apply electric field, spin rotates

Other light dark matter (e.g. dark photons) also
induce similar spin precession
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CASPEr

Axion affects physics of nucleus, NMR 1is sensitive probe

i
SQUID 7 -
pickup A7

loop
/ / / / axion “wind”’ 27&

OR E*

wsfl

Larmor frequency = axion mass = resonant enhancement

SQUID measures resulting transverse magnetization
NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbT1O3, many others
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Left and Right Circularly Polarized light
have different phase velocity

Detect Interferometrically

Electron Spin?
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B-L Dark Matter

Anomaly Free Standard Model Current

1 1
L=—7 (FuF")+omy ALAY — gy LA,

Protons, Neutrons, Electrons and Neutrinos are all charged
Electrically neutral atoms are charged under B-L

Force experiments constrain g < 10-21

oscillating L’ field can accelerate
(dark matter) atoms

Force depends on net neutron number - violates equivalence
principle. Dark matter exerts time dependent equivalence
principle violating force!



The Relaxion

LD (—]\42 —|—g¢)\h|2 + gM?p + g*d* —|—---—|—A4cos?

Hierarchy problem solved through cosmic evolution - does not require any
new physics at the LHC

¢ is a light scalar coupled to higgs with small coupling g
ge

—> —chjq
V

Dark matter ¢ =— ¢ = ¢ cos (m(p (t — V.7))

Time variation of masses of fundamental particles

gV ¢ gmeVv
mq ~Y mq
vV vV

—  force on atoms

Force violates equivalence principle. Time dependent equivalence principle
violation!



Detection Options

Measure relative acceleration between different elements/isotopes.

Leverage existing EP violation searches and work done for
gravitational wave detection

Torsion Balance

" o
T T

Force from dark matter causes
torsion balance to rotate

Measure angle, optical
lever arm enhancement

Atom Interferometer

Dark Matter

Differential
free fall

acceleration [ P

Stanford Facility
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Pulsar Timing Arrays

Pulsars are known to
have stable rotation - can
be used as clocks

Presently used to search
for low frequency (100
nHz) gravitational waves.

Pulsar signal modulates
due to gravitational wave
passing between earth
and the pulsar

Force by dark matter causes relative acceleration between Earth and
Pulsar, leading to modulation of signal

Relaxion changes electron mass at location of Earth - changes clock
comparison



Conclusions
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Similar approach seems possible in searching for oscillating fields
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The Dark Matter Landscape

bosonic WIMPs
|0-43 GeV |0-22 eV |0-3 eV 100 eV 102 GeV 048 GeV
(yr-) (10 GHz) (SM)
/ v
of coherent classical field X Y

Interactions restricted by
symmetry

Frequencies can naturally be
lab accessible (nHz - 10 GHz)

Lab-scale experiments

How do we cover full range?
What about Dark Energy?



