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Statistical Motivation

2

Statistics:
• Given a dataset, we are interested in the determining viability of models, preferred 

parameters of these models, making inferences about a model, etc.

(model parameters)

Use of likelihood dependent on model parameters

L(~⇥) = P (~y|~⇥) ~⇥ = (x1, x2, · · · , xn)

But what happens if you model is a function of an infinite set of parameters?

Require simplifications, approximations, or tricks (or perhaps a very 
expensive computer and an apathetic attitude towards error)

O / f(x)
f(x) =

1X

i=�1
ci �(x� xi)

Here, we study the case where observable is linear in unknown function

infinite parameter space
Use tricks to show that, in 
parameter space of interest, f(x) 
takes on simplified form
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Direct Detection Circa 2013
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 arXiv: 1311.4247
Various dark matter ‘hints’ juxtaposed against strong upper limits

• DAMA/LIBRA  (~9 sigma annual modulation)
• CDMS-II-Si (~3 sigma scattering rate)
• CRESST (~4 sigma scattering rate)
• CoGeNT (~2 sigma annual modulation & scattering rate)

Viability of a given signal dependent upon various assumptions 

dR

dER
=

⇢�CT

m�mT

Z

v�vmin(ER)
d3vf(~v, t) v

d�T

dER
(ER,~v)
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Particle PhysicsAstrophysics
• SI, SD, Magnetic (Electric) Dipole, etc.

• Proton/neutron couplings

• Scattering kinematics

• Local dark matter density 

• Dark matter velocity distribution
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Astrophysical Uncertainties
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arXiv: 1705.05853

Much of what we know comes from 
simulations

Most problematic when experiments probe 
the tail of the distribution

•  E.g. light WIMPs, inelastic scattering, etc

Experiments sensitive to v > v_min(Target, DM mass)

Considering different halo functions (i.e. f(v)) can alter the sensitivity of an experiment by 
orders of magnitude…

dR
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Halo-Independent Analyses
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Can we analyze direct detection data without making any assumptions on the 
underlying astrophysical distribution?

vmin

⌘̃
⌘̃ ⌘ ⇢�

m�

Z

vmin

d3v v f(~v, t)Fix:
• Interaction
• Kinematics
• Mass

Halo-Independent

m�

�p

Fix:
• Interaction 
• Kinematics
• Astrophysics

Conventional
(Halo-Dependent)

SJW, Gelmini (2017)

Rate =

Z
⌘̃(v)R(v)dv
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Early Issues related to putative signals:

• Statistical interpretations often ambiguous (at best)

• Required unbinned measurements of data and 
background

• Could only be applied to time-averaged rate 

•  (see Paolo Gondolo’s Talk)

SJW, Gelmini (2017)

Rate =

Z
⌘̃(v)R(v)dv
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New Halo-Independent Formalism
(Derived from Convex Hulls)
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JCAP12(2017)039  Gelmini, Huh, SJW

Goal: 
Develop a new halo-independent formalism that can be applied to any experiment/
dataset with a concrete and meaningful statistical interpretation
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JCAP12(2017)039  Gelmini, Huh, SJW

Goal: 
Develop a new halo-independent formalism that can be applied to any experiment/
dataset with a concrete and meaningful statistical interpretation

Road Map:
1. Prove all likelihoods are necessarily strictly convex functions of the predicted 

rate
• Likelihood maximized by

2. Use theorems from convex geometry to argue that the set of rates that 
maximize the likelihood can always be obtained from very simple halo 
functions
• Either                                            or 

3. Use point (2) to reduce the infinite dimensionality problem
• Construct halo-independent confidence bands

(Frequentist method based on use of likelihood ratio)

L(R1, R2, · · · )

~̂R = (R̂1, R̂2, · · · , R̂N )

fG(~u) =
NX

i=1

fi �
3(~u� ~ui) F (v) =

NX

i

Fi �(v � vi)

e.g. R1 is bin #1 (or experiment 1), 
and R2 is bin #2 (or experiment 2)
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Aside into Convex Geometry
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Convex Set
Let     be a convex set in a D-dimensional vector 
space.

�i

X

i

�i = 1

For any collection of     vectors in    , and 
semi-positive definite coefficients      w/

~xi

A

A

AA

X

i

�i ~xi 2 A

Convex Hull

Given `generating set’     , the 
convex hull is the minimal 
(unique) convex set containing  

Y

Y

Generating Set

Convex Set Not a Convex Set

Images Courtesy of Wikipedia
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Caratheodory’s Theorem (1907)
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x

y

x

y

Lets say we have a convex hull in dimension D defined by generating set X
Any element in the convex hull can be expressed as a convex 
combination of at most (D+1) generating vectors 

Caratheodory’s Number

Reminder: Convex combination implies coefficients are semi-positive definite and sum to 1
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x

y

x

y
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Fenchel-Eggleston Theorem (1953/58)
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x

y

x
y

Consider Caratheodory’s theorem, but in the limiting case where the 
generating set consists of at most D connected sets

Caratheodory’s number is reduced from (D+1) to D

(Also developed additional proof to reduce this to D-1 for some cases)
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~R = C
Z 1

0
dv

~H(v)

v
F (v) !

X

i

C
~H(vi)

vi
F (vi)dvi

Define a convex hull all possible rate vectors using 
the infinite generating set:

(
C
~H(vi)

vi

)
2 A

~̂R = (R̂1, R̂2, · · · , R̂N )Rate vector maximizing likelihood is contained in convex hull

~̂R =
X

i

�i ⇥ C
~H(vi)

vi

X

i

�i = 1

F (v) =
NX

i

Fi �(v � vi)

Consequently:

Forming the Convex Hull

Previous theorems guarantee: with

8v , F (v) � 0
 
X

i

dviF (vi) = 1

!

~R =
X

i

C
~H(vi)

vi
F (vi)dviCompare to: with

Successfully reduced parameter space 
to manageable size
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~̂R = (R̂1, R̂2, · · · , R̂N )
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Towards a Confidence Band
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f(x) =
NX

i=1

ci �(x� xi)We have shown that the likelihood is always maximized by

But in statistics the best-fit is rather meaningless…

Conventional Neyman-Pearson Likelihood Ratio: � ⌘ �2 ln


L(x = x0)

L(x̂)

�

Again, working in infinite dimensional parameter space makes this impossible…
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m�

Z
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Z
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Convex hull arguments can be applied to this 
‘constrained maximization’ as well
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Conclusions
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δ = 0 keV
m = 15 GeV
fn/fp = 1

DAMA

Xenon1T
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vmin [km/s]

Lo
g 1
0(

η̃
[d
ay
s-
1 ]
)

• Presented technique that allows one to infer statistically interesting information when 
in the presence of unknown background function

• Generalized halo-independent analyses such that they are now applicable to all types of 
data
• Likelihoods always maximized by speed/velocity distributions written as sum over small number of deltas

Method also allows for joint analysis with solar annihilation (see e.g. Ibarra and Rappelt 2017)
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Back-Up Slides
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Prior Methods

15

Interpretation of crosses ambiguous
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Prior Methods
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Karush-Kuhn-Tucker Conditions

q(vmin) lim
✏!0+

⌘̃(vmin + ✏)� ⌘̃(vmin)

✏
= 0

If q(v) only has isolated zeros… then halo 
function must be piecewise constant

Defines KKT multiplierq(vmin) =

Z vmin

v�

dv
�L

�⌘̃(v)

L[⌘̃] ⌘ �2 lnL[⌘̃]

Minimize likelihood functional with respect to halo function 
(enforcing monotonically decreasing requirement with KKT multipliers) 

Interpretation of crosses ambiguous
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Quick Example
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mχ = 9 GeV
fn/fp = 1

0 100 200 300 400 500 600 700
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vmin [km/s]

η̃
[d
ay
s-
1 ]

In the event of degenerate best-fit region one identify this as well
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Annual Modulation
Earth’s rotation about the Sun produces 
modulation in the scattering rate

Conventionally, assume form of f(v) in 
Galaxy, use Galilean transformation

Recall:

Let us now change variables to absorb time-dependence in H:

R↵i(t) =

Z
d3v C H↵i(~v)

v
f(~v, t)

R↵i(t) =

Z
d3u C Hgal

↵i (~u, t)

|~u� ~v� � ~v�(t)| fG(~u)

~u = ~v� + ~v�(t) + ~v

Note we are now working with 
velocity, not speed, distribution
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Annual Modulation
Time-averaged halo function:

1

v̄h(vmin)
⌘ 1

T

Z
dt

⇥(|~uh � ~v� � ~v�(t)|� vmin)

|~uh � ~v� � ~v�(t)|
⌘̃0BF (vmin) =

NX

h=1

Cfgal
h

v̄h(vmin)

A few notes:
• Now working with 3D velocity distribution rather than speed

• Minimization done done w.r.t. 4N parameters (quickly becomes 
numerically taxing)

• Best-fit halo function only piecewise constant at fixed times
• Require at most N streams, not (N - 1)

⌘̃⇤ = C
N+1X

h=1

fgal
h

1

T

Z
dt

⇥(|~uh � ~v� � ~v�(t)|� v⇤)

|~uh � ~v� � ~v�(t)|

Constrained Analysis:

0 100 200 300 400 500

vmin [km/s]
η̃

[A
rb
.U
ni
ts
]
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DAMA/LIBRA
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Infamous DAMA modulation at > 9 sigma

We can now infer preferred galactic velocity 
distributions, use these to calculate time-
averaged rates and make apples-to-apples 
comparison with e.g. Xenon1T
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DAMA/LIBRA
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δ = 0 keV
m = 15 GeV
fn/fp = 1

DAMA

Xenon1T

0 100 200 300 400 500 600 700
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-24
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vmin [km/s]

Lo
g 1
0(

η̃
[d
ay
s-
1 ]
)

~DAMA

1703.06892 (SJW, Gelmini)

There exist more interesting considerations:
• Alternative Models

• E.g. Magnetic inelastic dark matter                                  
(Chang, Weiner, Yavin — 1007.4200)

• Comparison with isotropic analysis (discussion to follow)
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Galactic Stream
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u1 = 300 km/s

0 100 200 300 400 500 600

vmin [km/s]

η̃
[A
rb
.U
ni
ts
]

Isotropy
The previous problem becomes numerically taxing and provides unphysical halosEnforcing isotropy makes velocity distribution more realistic and eases 
computation

• Numerical simulations expect (more or less) isotropic distributions

R↵i(t) =

Z
du H̄gal

↵I (u, t)F
gal(u)

H̄gal
↵i (u, t) ⌘

1

4⇡

Z
d⌦uHgal

↵i (~u, t)

F gal(u) ⌘ 4⇡u2fgal(u)

⌘̃BF(vmin, t) =
NX

h=1

CFh⇥{
1

uh
vmin  uh � u�(t)

u�(t) + uh � vmin

2u�(t)uh
uh � u�(t) < vmin < uh + u�(t)

u�(t) = |~v� + ~v�(t)|
Where:

fG(~u) = fG(|~u|)
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Connections with Indirect Detection
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Capture rate in Sun depends on same distribution

C =
X

i

Z R�

0

4⇡r2dr ⌘i(r)
⇢
loc

m�

Z

vvSUN
max,i

(r)
d3v

f(~v)

v
(v2 + v

esc

(r)2)

Z
2µ2

(v2
+vesc(r)

2
)/m

A

m
�

v2/2
dER

d�i

dER

Can insert halo-independent DD results into indirect detection calculations, or 
perform joint analysis

Ibarra and Rappelt 2017


