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Statistical Motivation

Statistics:
® Given a dataset, we are interested in the determining viability of models, preferred
parameters of these models, making inferences about a model, etc.

Use of likelihood dependent on model parameters

L(6) = P(7]6) O = (z1,29,  ,xn)

(model parameters)

But what happens if you model is a function of an infinite set of parameters!?

Require simplifications, approximations, or tricks (or perhaps a very
expensive computer and an apathetic attitude towards error)

Here, we study the case where observable is linear in unknown function

infinite parameter space . .
00 Use tricks to show that, in

O X _ | o parameter space of interest, f(x)
f( ) f(ilj‘) — Z Ci 5(513 'CEZ) takes on simplified form
1=—00
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Direct Detection Circa 2013

arXiv: 1311.4247
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Various dark matter ‘hints’ juxtaposed against strong upper limits

 DAMA/LIBRA (~9 sigma annual modulation)
* CDMS-II-Si (~3 sigma scattering rate)
* CRESST (~4 sigma scattering rate)
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Astrophysics

* Local dark matter density

* Dark matter velocity distribution

Various dark matter ‘hints’ juxtaposed against strong upper limits

 DAMA/LIBRA (~9 sigma annual modulation)

* CDMS-II-Si (~3 sigma scattering rate)

* CRESST (~4 sigma scattering rate)

* CoGeNT (~2 sigma annual modulation & scattering rate)

Viability of a given signal dependent upon various assumptions

d d .
—RZ@X - / of (@, )|v| 5 (Er, 7)
dER mymr ’UEEJmin(ERa dig

_ y,

Particle Physics
* SI, SD, Magnetic (Electric) Dipole, etc.

* Proton/neutron couplings

* Scattering kinematics

UCLA Dark Matter
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Astrophysical Uncertainties

arXiv: 1705.05853

. == SHM — ting+0s | Much of what we know comes from
0'0065' — oo ] simulations
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iy [ MaGICC
2 0.004F Sloane+'16 A
é 0.003F
~ : Most problematic when experiments probe
= 0002} P P P

the tail of the distribution

0.001

: * E.g light WIMPs, inelastic scattering, etc
0.000¢

dO’T
— = d3v f (U, t) v
dER M 1T /’UZ’Umin(ER) f( ) dER

(ER,U)
Experiments sensitive to v > v_min(Target, DM mass)

Considering different halo functions (i.e. f(v)) can alter the sensitivity of an experiment by
orders of magnitude...
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Halo-Independent Analyses

Can we analyze direct detection data without making any assumptions on the
underlying astrophysical distribution?

Op ¢ Conventional ~ s Halo-Independent
(Halo-Dependent) 7]
Fix: Fix: i = '0_0/ o v f(7,1)
; ol
* Interaction * Interaction X Umin
¢ Kinematics * Kinematics
e Astrophysics * Mass
. " Umin
x
Rate = / n(v)R(v)dv
I UCLA Dark Matter
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Halo-Independent Analyses

Can we analyze direct detection data without making any assumptions on the

underlying astrophysical distribution?

Conventional ~
(Halo-Dependent) Y

Fix:

¢ Interaction

Op %

e Kinematics

e Astrophysics

>

T

Early Issues related to putative signals:
e Statistical interpretations often ambiguous (at best)

e Required unbinned measurements of data and
background

e Could only be applied to time-averaged rate

e (see Paolo Gondolo’s Talk)

4+ Halo-Independent

Fix: 0,

'0—0/ d>vv f(v,1)
m Umin

. X
e Interaction

e Kinematics

e Mass

UCLA Dark Matter
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New Halo-Independent Formalism

(Derived from Convex Hulls)

Goal:
Develop a new halo-independent formalism that can be applied to any experiment/
dataset with a concrete and meaningful statistical interpretation

JCAP12(2017)039 Gelmini, Huh, S)W
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New Halo-Independent Formalism

(Derived from Convex Hulls)

Goal:
Develop a new halo-independent formalism that can be applied to any experiment/
dataset with a concrete and meaningful statistical interpretation

JCAP12(2017)039 Gelmini, Huh, S)W

L(R1, R, )

(Frequentist method based on use of likelihood ratio) e.g. Ry is bin #1 (or experiment 1),
and R; is bin #2 (or experiment 2)

Road Map:
|. Prove all likelihoods are necessarily strictly convex functions of the predicted
rate A o X
* Likelihood maximized by R = (Rl, Ry, -+, RN)

2. Use theorems from convex geometry to argue that the set of rates that
maximize the likelihood can always be obtained from very simple halo
functions

N
» Either /(i) = Zfz 53(i — ;) OF — ZF 6(v

3. Use point (2) to reduce the infinite dlmen5|onallty problem

* Construct halo-independent confidence bands
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Aside into Convex Geometry

Convex Set Convex Hull
Let A be a convex set in a D-dimensional vector Given “generating set’ Y, the
space. convex hull is the minimal
For any collection of Z; vectors in A, and (unique) convex set containing Y

semi-positive definite coefficients A\; w/ Z Ai =1

— e&
Z )\’L h 7} E A t@,’&.\{\%?/
)

2

Convex Set Not a Convex Set

UCLA Dark Matter
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Caratheodory’s Theorem (1907)

Lets say we have a convex hull in dimension D defined by generating set X

Any element in the convex hull can be expressed as a convex
combination of at most (D+1) generating vectors

\J Caratheodory’s Number

X X

Reminder: Convex combination implies coetficients are semi-positive definite and sum to 1

UCLA Dark Matter
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Fenchel-Eggleston Theorem (1953 /58)

Consider Caratheodory’s theorem, but in the limiting case where the
generating set consists of at most D connected sets

Caratheodory’s number is reduced from (D+1) to D

X X

(Also developed additional proof to reduce this to D-1 for some cases)

UCLA Dark Matter
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Forming the Convex Hull

Define a convex hull all possible rate vectors using

the infinite generating set: 4 ?__i \
v.
) ) C (i) > € A
= = H(v) H(v;) Uy
R=C dv Fv)— » C F(v;)dv; : ’
/O () Z o F(vi)dv,
Rate vector maximizing likelihood is contained in convex hull }2{’ — (f{l7 Ry, - - 7}}/\/)

Previous theorems guarantee: R% _ Z \; X CH(U’&) with Z N =

Compare to: R — Z CH(%) F(v;)dv;  with Vv, F(U) > () (Z dv; F(v;) = 1)
. (%} ¢

(]
Consequently:

N S fully reduced

B uccessfully reduced parameter space
F(U) — Z F; 5(” — Ui) to manageable size
. )
UCLA Dark Matter
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Towards a Confidence Band

We have shown that the likelihood is always maximized by f(:lf) — E C; 5(33‘ — 33@)
1=1

But in statistics the best-fit is rather meaningless...

o

Conventional Neyman-Pearson Likelihood Ratio: = —2In [

Again, working in infinite dimensional parameter space makes this impossible...

UCLA Dark Matter
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Towards a Confidence Band

We have shown that the likelihood is always maximized by f(:l?) = E C; 5(517 — x@)
1=1

But in statistics the best-fit is rather meaningless...

o

Conventional Neyman-Pearson Likelihood Ratio: = —2In [

Again, working in infinite dimensional parameter space makes this impossible...

New Question: Does there exist at least one halo function passing through (v, \ eta) compatible at the
desired CL?

A

7

n= 'OU/ d>vv (T, t)

My

Umin
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Towards a Confidence Band

We have shown that the likelihood is always maximized by f(:lj) = E C; 5(517 — x@)
1=1

But in statistics the best-fit is rather meaningless...

o

Conventional Neyman-Pearson Likelihood Ratio: = —2In [

Again, working in infinite dimensional parameter space makes this impossible...

New Question: Does there exist at least one halo function passing through (v, \ eta) compatible at the
desired CL?

A

7

n= '00/ d>vv (T, t)

My

Convex hull arguments can be applied to this
‘constrained maximization’ as well

Umin

UCLA Dark Matter
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in the presence of unknown background function

Conclusions

* Presented technique that allows one to infer statistically interesting information when

* Generalized halo-independent analyses such that they are now applicable to all types of

data

* Likelihoods always maximized by speed/velocity distributions written as sum over small number of deltas

Method also allows for joint analysis with solar annihilation (see e.g. Ibarra and Rappelt 2017)
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Minimize likelihood functional with respect to halo function
(enforcing monotonically decreasing requirement with KKT multipliers)

Karush-Kuhn-Tucker Conditions

vmin 5L
d\Umin ) — dv =
(Vrmin) [; 07)(v)

L[n] = —21n L]7]

Defines KKT multiplier

e e
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If q(v) only has isolated zeros... then halo
function must be piecewise constant
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Quick Example
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In the event of degenerate best-fit region one identify this as well
UCLA Dark Matter
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Annual Modulation

Earth’s rotation about the Sun produces
modulation in the scattering rate

June
WIMP Wind V” e
—_—

Conventionally, assume form of f(v) in

Galaxy, use Galilean transformation
December

—

Recall:
Roi(t) = / a ¢ el

(%

Let us now change variables to absorb time-dependence in H:

R.. d3 C Hgal( ) —
Oé’b( ) u ’u _ U@ _ U@ (t) | fa (u) Note we are now working with

X/ velocity, not speed, distribution
UCLA Dark Matter
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Annual Modulation

Time-averaged halo function:

N a — — —
i B Cre L _ 1 [ Odn — Ve — Up(t)| — Vmin)
NBF (Umin) = Z — . - N = Y

1—1 Vh (Vmin) Uh(Vmin) T Uiy, — Ve — Ug(t)]

A few notes:
* Now working with 3D velocity distribution rather than speed

* Minimization done done w.r.t. 4N parameters (quickly becomes

numerically taxing)
* Best-fit halo function only piecewise constant at fixed times

* Require at most N streams, not (N - 1)

Constrained Analysis:
N+1

Z ga11/ O(|uy — vy — Ug(t)| — v™)
U, — Vo — Vs (1)

n [Arb. Units]

Vmin  [Km/s]

UCLA Dark Matter
February 22, 2018 13



DAMA /LIBRA

Infamous DAMA modulation at > 9 sigma
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n 0 61 keV We can now infer preferred galactic velocity
2 om 150 distributions, use these to calculate time-
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2 o O 5 160 O ~averaged rates and make apples-to-apples
< 26keV - comparison with e.g. Xenon| T
N -0.01 120
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UCLA Dark Matter
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DAMA /LIBRA
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0
There exist more interesting considerations: .
» Alternative Models z :
» E.g. Magnetic inelastic dark matter X
(Chang, Weiner, Yavin — 1007.4200)
« Comparison with isotropic analysis (discussion to follow)
. 1073 =
UCLA Dark Matter 0
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Galactic Stream

WIMP Wind
ey

Visible galaxy

e ———e

December

Dark matter
halo

Milky Way: ‘ e BN R
Triaxial Dark Halo i ARG S Leading tidal .
A debris

Milky Way disk
P O O Direction of motion

~ Trailing tidal
: debris

Sgr.core

David Law
UCLA
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Isotropy

Enforcing isotropy makes velocity distribution more realistic and eases
computation

* Numerical simulations expect (more or less) isotropic distributions

Ros(t) = / duFE (u, £) FE ()

1
HE (u,t) = o /dQ HE (@, 1)

F&l(u) = 4mu? £87 (u)

fa(u) = fa(|u))

[Arb. Units]

n

February 22, 2018

1 |

[ — Umin S Up — Ugp (t) Vrin (kS|

Up

un(t) + up — Vmin

77BF Umin, t ZCFhX < EB( ;u (th)u Up — Ugp (t) < VUmin < Up + U (t)
A Where:
\ ug (t) = [Vo + Ug(1)]
UCLA Dark Matter
22



Connections with Indirect Detection

Capture rate in Sun depends on same distribution
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Can insert halo-independent DD results into indirect detection calculations, or
perform joint analysis

Ibarra and Rappelt 2017
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