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• Dark Matter Candidate: Complex Scalar Field 
Dark Matter  (SFDM, or BEC SFDM) 

 
• ΛSFDM Cosmology: Observational Constraints 

• Stochastic Gravitational-Wave Background  
(SGWB) from Inflation: Amplification in ΛSFDM 

• Prediction of Detectability of the Inflationary  
SGWB by Advanced LIGO/Virgo 



Complex Scalar Field Dark Matter (SFDM), 
aka Bose-Einstein Condensed Cold Dark Matter (BEC-CDM) 

• Alternative to WIMP CDM 

• Ultralight bosons (m ≳ 10-22 eV/c2) 

• Complex scalar field: ψ = ψ eiθ 

• Global U(1) symmetry ⟺ conserved particle number   ρSFDM ,0 = nSFDM ,0mc2  = Ω D M  ρcrit ,0 
 

• Particles created with low entropy per particle ⟹ BEC 

• Add repulsive self-interaction: V SI = λ ψ 4 / 2 

• Small-scale structure suppressed for L < LSFDM: 

LSFDM  = max{λdeBroglie,lSI } 
λdeB            quantum pressure 

  lSI                 self-interaction 
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  complex SFDM is asymmetric dark matter 
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SFDM has 3 phases 

but (3) ⟹ 
as 

⟹  Stiff-SFDM-dominated  
early Universe 

Ω SFDM → 1 
a → 0 

Einstein + Klein-Gordon ⟹ 
( p / ρ)SFDM = w(t ) 

(1) Late: w=0 
(Non-relativistic matter) 

(2) Intermediate: w=1/3  
(Radiationlike) 

(3) Early: w=1  
(Stiff) 

 
(1) + (2) ⟹ Just like ΛCDM 



ΛSFDM: the Universe has 6 eras 

Inflation    Reheating   Stiff-SFDM-dom.   Radiation-dom.  Matter-dom.  Λ-dom. 
(w= -1) (w=0) (w=1) (w=1/3) (w=0) (w= -1) 



• Tensor-to-scalar ratio: r  = AT/AS                                                                                     
                                                                 inflationary  
                                                                   paradigm 
• Reheat temperature: Treheat 

ΛSFDM Model Parameters 

•  SFDM particle parameters: m, λ/(mc2)2 

λ/(mc2)2 = 1×10-18 eV-1cm3 ⟹ lSI ≈ 0.8kpc 

- Global U(1) symmetry ⟹ Charge (particle number density) conservation 

SFDM ,0 
2 Q ≡ n − n = ρ / (mc ) 

- BEC ⟹ Classical field description 

(n = 0) 



Stochastic Gravitational-Wave Background from Inflation 

Single-field slow-roll inflation 

- r > 0.001 
- Consistency relation nt = -r/8 
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Subhorizon inflationary SGWB energy density spectrum: 
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• Friedmann equation 

• Klein-Gordon Equation 

Holistic Evolution of the ΛSFDM Universe 

SGWB contribution to the  
expansion history self-  
consistently included 

conformal time: dτ  ≡ dt / a(t ) 



• In subhorizon limit, different modes contribute to ρGW (t) 
according to the expansion phase during which they re-entered 
the horizon, how many e-foldings elapse in each phase since 
horizon crossing, and the initial power spectrum:  

ρGW (t): Tensor Mode Perturbations in the ΛSFDM Universe 

conformal time: dτ  ≡ dt / a(t ) 

Tensor mode equation of motion in Fourier space: 

w = 0  (reheating era)  

w = 1  (stiff-SFDM-dominated) era  

w = 1/3  (radiation-dominated era)  

GW spectrum vs. k 
 at scale factor a(t): 

Red tilt 

Blue tilt 



ρGW (t): Tensor Mode Perturbations in the ΛSFDM Universe 

superhorizon 

subhorizon 

Example:  Tensor modes of different k  that re-enter horizon during the reheating era : w = 0 

superhorizon subhorizon 



Holistic Evolution of the ΛSFDM Universe 
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•  Matter-radiation equality: zeq 

•  Effective number of neutrino species at BBN: Neff 

Cosmological Constraints on the SFDM Particle Parameters 

Bohua Li, Tanja Rindler-Daller, Paul R. Shapiro 2014, PRD, 89, 083536  
(arXiv: 1310.6061) 
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Holistic Evolution of the ΛSFDM Universe 



Cosmological Constraints on the SFDM Particle Parameters 



Cosmological Constraints on the SFDM Particle Parameters 

Zeq = 3365 +/- 44 
             (68% C.L.) 

Neff, BBN = 3.56 +/-  0.23 
               (68% C.L.) 



Cosmological Constraints on the SFDM Particle Parameters 



•  Matter-radiation equality: zeq 

•  Effective number of neutrino species at BBN: Neff 

•  

Cosmological Constraints on the SFDM Particle Parameters 

SGWB measured by laser interferometers: 

ΩGW(f) at a=1 



• LIGO can detect  ΛSFDM-amplified  inflationary SGWB for a range of 
SFDM  parameters  (m, λ) that satisfy cosmological constraints, for 
values of  tensor-to-scalar ratio r currently allowed by CMB expmnt and 
a large range of reheat temperatures Treheat.  

   
• For given r and λ/(mc2)2, the marginally-allowed model for each Treheat  

has the smallest m that satisfies cosmological constraints and 
maximizes the present energy density of the SGWB for that Treheat   
 

• SGWB is then maximally detectable for Treheat  values for which modes 
that re-enter horizon when reheating ends have frequencies today 
inside LIGO sensitive band.  
 

• GW experiments can already place a new kind of cosmological constraint 
on SFDM! 

Stiff-SFDM-dominated era amplifies SGWB from inflation 



scale factor at horizon re-entry for modes of frequency f today  



Stiff-SFDM-dominated era amplifies SGWB from inflation 

GW Ω  ( f ) = Ω GW , peak 

 f / fpeak , f ≤ f peak 

f > fpeak 

ΛSFDM predicts 2-parameter broken power-law spectrum at high frequencies: 

ΛSFDM 
ΛCDM 

{ (9π / 64)( f / fpeak )-2, 

Example 1 prediction for aLIGO/Virgo 



Stiff-SFDM-dominated era amplifies SGWB from inflation 

Example 1 prediction for aLIGO/Virgo 

Spoiler alert! Upper limit from O1 data excludes this example case at 95% CL (1612.02029) 

λ/(mc2)2 = 1×10-18 eV-1cm3  

m = 1.6×10-19 eV/c2 



Stiff-SFDM-dominated era amplifies SGWB from inflation 

Example 1 prediction for aLIGO/Virgo 

Spoiler alert! Upper limit from O1 data excludes this example case at 95% CL (1612.02029) 

λ/(mc2)2 = 1×10-18 eV-1cm3  

m = 1.6×10-19 eV/c2 

⟹ The Age of Dark Matter Search by GW Detection has Begun! 



Stiff-SFDM-dominated era amplifies SGWB from inflation 

GW Ω  ( f ) = Ω GW , peak 

 f / fpeak , f ≤ f peak 

f > fpeak 

ΛSFDM predicts 2-parameter broken power-law spectrum at high frequencies: 

ΛSFDM 
ΛCDM 

{ (9π / 64)( f / fpeak )-2, 

Example 2 prediction for aLIGO/Virgo 



Stiff-SFDM-dominated era amplifies SGWB from inflation 

Example 2 prediction for aLIGO/Virgo 

λ/(mc2)2 = 1×10-18 eV-1cm3  

m = 8×10-21 eV/c2 

This example case is NOT excluded by O1 data! 



Broader ΛSFDM parameter range to be tested 

Marginally allowed ΛSFDM models for λ/(mc2)2 = 1×10-18 eV-1cm3 
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Stiff-SFDM-dominated era amplifies SGWB from inflation 

SGWB’s from (SFDM + Inflation) vs. (Unresolved Binary Black Hole Mergers) 



Stiff-SFDM-dominated era amplifies SGWB from inflation 

SGWB’s from (SFDM + Inflation) vs. (Unresolved BH + BH and NS + NS Binary Mergers) 

Estimated Total Background from  BH+BH and NS+NS Mergers 



Summary 

 (A) + (B) Cosmological Constraints on SFDM Particle Parameters 

• Observational constraints on Neff and zeq  constraints on allowed range of (m, λ)                                 

(A) Complex SFDM has stiff and radiation-like relativistic phases 

Subhorizon tensor modes contribute a radiation-like energy density to the background universe  
Further increases the expansion rate during the radiation-dominated era  

(B) Stiff-SFDM-dominated era amplifies SGWB from inflation 

 Increases the expansion rate of the early universe 



• ΛSFDM predicts 2-parameter broken power-law SGWB spectrum 
f ≤ fpeak 

f > f peak 

Expected SNR depends on the position of fpeak relative to LIGO band 

 f / fpeak , 

(9π / 64)( f / fpeak )-2, { GW , peak ΩGW( f ) = Ω 

• LIGO can detect  ΛSFDM-amplified  inflationary SGWB for a range of SFDM  (m, 
λ) that satisfy cosmological constraints, for tensor-to-scalar ratio r values 
currently allowed by CMB and a large range of reheat temperatures Treheat.    

• For given r and λ/(mc2)2, the marginally-allowed model for each Treheat  has the 
smallest m that satisfies cosmological contraints and maximizes the present 
energy density of the SGWB for that Treheat .  

• SGWB is then maximally detectable if Treheat   s.t. modes that re-enter horizon 
when reheating ends have frequencies inside LIGO sensitive band.  
➡  e.g. For marginally-allowed models with r=0.01 and λ/(mc2)2 = 1×10-18 eV-1cm3,  
        8.75×103 < Treheat (GeV) < 1.7×105  is excluded at 95 CL by LIGO O1 data.  
➡ But for the same illustrative family, 3σ detection by O5 data (in 2022) is possible  
   for 600 < Treheat (GeV) < 107 GeV. 
➡  GW experiments can already place a new kind of cosmological constraint on 

SFDM! • SGWB (inflation + ΛSFDM) can exceed that from unresolved BH and NS mergers! 

Stiff-SFDM-dominated era amplifies SGWB from inflationGWs detectable! 

Summary (cont.) 



Q: What happens to  ΛSFDM if Neff, BBN  = Neff, standard  = 3.046 
              is someday favored by abundance measurements? 
 
A:  Upper limit on ∆ Neff, BBN remains, but lower limit is relaxed 
 
    allows λ → 0 limit (i.e. SFDM non-self-interacting), since SFDM then 
has no radiation-like (w = 1/3) intermediate phase 
 
   SFDM transitions directly from stiff (w = 1) to matter-like (w = 0)  
 
  But stiff phase must still end before BBN   m > mmin  
 
 
 
 
 
 AND even if λ → 0, ΛSFDM stiff phase amplifies the inflationary 
         SGWB enough to be detectable!!  

Summary (cont.) 
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